The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.02 - March/April (2001 vol.13)
pp: 232-244
ABSTRACT
<p><b>Abstract</b>—In this paper, we introduce Linear Relational Embedding as a means of learning a distributed representation of concepts from data consisting of binary relations between these concepts. The key idea is to represent concepts as vectors, binary relations as matrices, and the operation of applying a relation to a concept as a matrix-vector multiplication that produces an approximation to the related concept. A representation for concepts and relations is learned by maximizing an appropriate discriminative goodness function using gradient ascent. On a task involving family relationships, learning is fast and leads to good generalization.</p>
INDEX TERMS
Distributed representations, feature learning, concept learning, learning structured data, generalization on relational data, Linear Relational Embedding.
CITATION
Alberto Paccanaro, Geoffrey E. Hinton, "Learning Distributed Representations of Concepts Using Linear Relational Embedding", IEEE Transactions on Knowledge & Data Engineering, vol.13, no. 2, pp. 232-244, March/April 2001, doi:10.1109/69.917563
32 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool