The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.01 - January/February (1999 vol.11)
pp: 166-174
ABSTRACT
<p><b>Abstract</b>—Researchers have embraced a variety of machine learning (ML) techniques in their efforts to improve the quality of learning programs. The recent evolution of hybrid architectures for machine learning systems has resulted in several approaches that combine rule-induction methods with case-based reasoning techniques to engender performance improvements over more-traditional one-representation architectures. We briefly survey several major rule-induction and case-based reasoning ML systems. We then examine some interesting hybrid combinations of these systems, and explain their strengths and weaknesses as learning systems. We present a balanced approach to constructing a hybrid architecture, along with arguments in favor of this balance and mechanisms for achieving a proper balance. Finally, we present some initial empirical results from testing our ideas and draw some conclusions based on those results.</p>
INDEX TERMS
Case-based reasoning, rule induction, machine learning, classification, numeric prediction.
CITATION
Nick Cercone, Aijun An, Christine Chan, "Rule-Induction and Case-Based Reasoning: Hybrid Architectures Appear Advantageous", IEEE Transactions on Knowledge & Data Engineering, vol.11, no. 1, pp. 166-174, January/February 1999, doi:10.1109/69.755625
6 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool