
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Alberto Caprara, Matteo Fischetti, Dario Maio, "Exact and Approximate Algorithms for the Index Selection Problem in Physical Database Design," IEEE Transactions on Knowledge and Data Engineering, vol. 7, no. 6, pp. 955967, December, 1995.  
BibTex  x  
@article{ 10.1109/69.476501, author = {Alberto Caprara and Matteo Fischetti and Dario Maio}, title = {Exact and Approximate Algorithms for the Index Selection Problem in Physical Database Design}, journal ={IEEE Transactions on Knowledge and Data Engineering}, volume = {7}, number = {6}, issn = {10414347}, year = {1995}, pages = {955967}, doi = {http://doi.ieeecomputersociety.org/10.1109/69.476501}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Knowledge and Data Engineering TI  Exact and Approximate Algorithms for the Index Selection Problem in Physical Database Design IS  6 SN  10414347 SP955 EP967 EPD  955967 A1  Alberto Caprara, A1  Matteo Fischetti, A1  Dario Maio, PY  1995 KW  Index TermsIndex selection problem KW  relational database KW  physical database design KW  01 integer linear programming KW  branchandbound algorithm KW  heuristic algorithm. VL  7 JA  IEEE Transactions on Knowledge and Data Engineering ER   
[1] H.D. Anderson and P.B. Berra,“Minimum cost selection of secondary indexes for formatted files,” ACM Trans. Database Systems, vol. 2, pp. 6890, 1977.
[2] E. Barcucci,R. Pinzani,, and R. Sprugnoli,“Optimal selection of secondary indexes,” IEEE Trans. Software Engineering, vol. 16, pp. 3238, 1990.
[3] E. Barcucci,A. Chiuderi,R. Pinzani,, and E. Rodella,“Optimal selection of secondary indices in relational databases,” Proc. Int’l Symp. Computer and Information Sciences I, M. Baray and B.Özgüç, eds., pp. 157168. Elsevier, 1991.
[4] R. Bonanno,D. Maio,, and P. Tiberio,“An approximation algorithm for secondary index selection in relationaldatabase physical design,” The Computer J., vol. 28, pp. 398405, 1985.
[5] F. Bonfatti,D. Maio,, and P. Tiberio,“A separabilitybased method for secondary index selection in physicaldatabase design,” Methodology and Tools for Data Base Design, S. Ceri, ed., pp. 149160. NorthHolland, 1983.
[6] A.F. Cardenas, "Analysis and Performance of Inverted Data Base Structures," Comm. ACM, vol. 18, no. 5, pp. 253263, May 1975.
[7] A. Caprara,“Un algoritmo esatto per la selezione di indici secondari nel progettofisico relazionale,” Tesi di Laurea, DEIS, Univ. of Bologna, 1991.
[8] P. Ciaccia and D. Maio,“On the optimal ordering of multiplefield tables,” Technical Report CIOCCNR 86, Univ. of Bologna, 1992.
[9] D. Comer,“The difficulty of optimum index selection,” ACM Trans. Database Systems, vol. 3, pp. 440445, 1978.
[10] H.P. Crowder,E.L. Johnson,, and M.W. Padberg,“Solving largescale zeroone linear programming problems,” Operations Research, vol. 31, pp. 803834, 1983.
[11] P. De,J.S. Park,, and H. Pirkul,“An integrated model ofrecord segmentation and access path selection fordatabases,” Information Systems, vol. 13, pp. 1330, 1988.
[12] B.J. Falkowski,“Comments on an optimal set of indices for a relational database,” IEEE Trans. Software Engineering, vol. 18, pp. 168171, 1992.
[13] S. Finkelstein, M. Schkolnick, and P. Tiberio, “Physical Database Design for Relational Databases,” ACM Trans. Database Systems, Mar. 1988.
[14] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NPCompleteness.New York: W.H. Freeman, 1979.
[15] M. Hatzopoulos and J.G. Kollias,“On the optimal selection of multilist database structures,” IEEE Trans. Software Engineering, vol. 10, pp. 681687, 1984.
[16] M. Hatzopoulos and J.G. Kollias,“On the selection of a reduced set of indexes,” The Computer J., vol. 28, pp. 406408, 1985.
[17] W.F. King,“On the selection of indices for a file,” IBM Research Report RJ 1641, San Jose, Calif., 1974.
[18] J.G. Kollias,“A heuristic approach for determining the optimal degree of fileinversion,” Information Systems, vol. 4, pp. 307318, 1979.
[19] M.Y.L. Ip,L.V. Saxton,, and V.V. Raghavan,“On the selection of an optimal set of indexes,” IEEE Trans. Software Engineering, vol. 9, pp. 135143, 1983.
[20] L.G. Khachian,“A polynomial algorithm in linear programming,” Soviet Mathematics Doklady, vol. 20, pp. 191194, 1979.
[21] D. Maio,C. Sartori,, and M.R. Scalas,“Architecture of a physical design tool for relational DBMSs,” Computer Aided Data Base Design, A. Albano, V. De Antonellis, and A. Di Leva, eds., pp. 115130. NorthHolland, 1985.
[22] D. Maio,C. Sartori,, and M.R. Scalas,“A modular user oriented decision support for physical databasedesign,” Decision Support Systems, vol. 3, pp. 155163, 1987.
[23] R.E. Marsten, “The Design of the XMP Linear Programming Library,” ACM Trans. Mathematical Software, Vol. 7, No. 4, 1981, pp. 481497.
[24] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementation. John Wiley and Sons, 1990.
[25] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization. New York: Wiley, 1988.
[26] M.W. Padberg and G. Rinaldi,“Optimization of a 532city travelling salesman problem,” Operations Research Letters, vol. 6, pp. 18, 1987.
[27] A. Putkonen,“On the selection of access path in inverted database organization,” Information Systems, vol. 4, pp. 219225, 1979.
[28] M. Schkolnick,“The optimal selection of secondary indices for files,” Information Systems, vol. 1, pp. 141146, 1975.
[29] M. Stonebraker,“The choice of partial inversions and combined indices,” Int’l J. Computer and Information Sciences, vol. 3, pp. 167188, 1974.
[30] K.Y. Whang,G. Wiederhold,, and D. Sagalowicz,“Separability—An approach to physical database design,” IEEE Trans. Computers, vol. 33, pp. 209222, 1984.
[31] P.S. Yu,M.S. Chen,H. Heiss,, and S.H. Lee,“On workload characterization of relational database environments,” IEEE Trans on Software Engineering, vol. 18, no. 4, pp. 347355, Apr. 1992.