The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.05 - October (1995 vol.7)
pp: 683-690
ABSTRACT
<p><it>Abstract</it>—A systematic approach has been developed to construct neural networks for qualitative analysis and reasoning. These neural networks are used as specialized parallel distributed processors for solving constraint satisfaction problems. A typical application of such a neural network is to determine a reasonable change of a system after one or more of its variables are changed. A six-node neural network is developed to represent fundamental qualitative relations. A larger neural network can be constructed hierarchically for a system to be modeled by using six-node neural networks as building blocks. The complexity of the neural network building process is thus kept manageable. An example of developing a neural network reasoning model for a transistor equivalent circuit is demonstrated. The use of this neural network model in the equivalent circuit parameter extraction process is also described.</p>
INDEX TERMS
Knowledge representation, qualitative reasoning, constraint satisfaction, parallel distributed processing, neural networks, expert systems.
CITATION
Mankuan Vai, Zhimin Xu, "Representing Knowledge by Neural Networks for Qualitative Analysis and Reasoning", IEEE Transactions on Knowledge & Data Engineering, vol.7, no. 5, pp. 683-690, October 1995, doi:10.1109/69.469828
25 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool