This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Order Structure of Symbolic Assertion Objects
October 1994 (vol. 6 no. 5)
pp. 830-835

We study assertion objects that constitute a particular class of symbolic objects. Symbolic objects constitute a data analysis driven formalism, which can be compared to propositional calculus, but which is oriented toward the duality intension (characteristic properties) versus extension (set of all individuals verifying a given set of properties). The set of assertion objects is endowed with a partial order and a quasi-order. We focus on the property of completeness, which precisely expresses the duality intension-extension. The order structure of complete assertion objects is studied, using notions of lattice theory and Galois connection, and extending R. Wille's work (1982) to multiple-valued data. Two results are then obtained for particular cases.

[1] A. Arnault and P. Nicole,La Logique ou l'Art de Penser, Rev. Ed. Paris, France: Flammarion, 1970.
[2] M. Barbut and B. Monjardet,Ordre et Classification, Algèbre et Combinatoire, Vols. I, II. Paris, France: Hachette, 1970.
[3] G. Birkhoff,Lattice Theory, 3rd Ed. Providence. RI: American Mathematical Society Colloquium Publications, 1967.
[4] P. Brito, "Analyse de données symboliques: Pyramides d'héritage." Thèse, UniversitéParis IX-Dauphine, Paris, France, 1991.
[5] P. Brito and E. Diday, "Pyramidal representation of symbolic objects," in M. Schader and W. Gaul, Eds.,Knowledge, Data and Computer-Assisted Decisions. Berlin: Springer-Verlag, 1990, pp. 3-16.
[6] F. A. T. De Carvalho, J. Lebbe, R. Vignes, and E. Diday, "Dissimilarity in symbolic data analysis," inProc. COMPSTAT, 9th Symp. on Computational Statistics, Dubrovnik, Yugoslavia, 1990.
[7] E. Diday, "The symbolic approach in clustering and related methods of data analysis," in H. H. Bock, Ed.,Classification and Related Methods of Data Analysis. Amsterdam: North-Holland, 1987, pp. 673-684.
[8] E. Diday, "Knowledge representation and symbolic data analysis," in M. Schader and W. Gaul, Eds.,Knowledge, Data and Computer-Assisted Decisions. Berlin: Springer-Verlag, 1990, pp. 17-34.
[9] E. Diday, "Des objets de l'analyse de donnéesàceux de l'analyse des connaissances," in Y. Kodratoff and E. Diday, Eds.,Induction Symbolique-Numériqueàpartir de Données. Paris, France: Cepadues, 1991.
[10] E. Diday, "Towards a statistics of intension for knowledge analysis," inProc. WOCFAI, 1st World Conf. Fundamentals of Artificial Intell., Paris, France, 1991.
[11] E. Diday and P. Brito, "Introduction to symbolic data analysis," in O. Opitz, Ed.,Conceptual and Numerical Analysis of Data. New York: Springer-Verlag, 1989, pp. 45-84.
[12] V. Duquenne, "Contextual implications between attributes and some representation properties for finite lattices," Rapport C.A.M.S. P.023, Maison des Sciences de l'Homme, Paris, 1986.
[13] B. Ganter, "Two basic algorithms in concept analysis," preprint a 831, Technische Hochschule Darmstadt, Darmstadt, Germany, 1984.
[14] O. Gascuel, "Inductive learning, numerical criteria and combinatorial optimization: Some results," in E. Diday, Ed.,Data Analysis, Learning Symbolic and Numerical Knowledge. New York: Nova Science, 1989, pp. 417-424.
[15] C. Jacq, "Combining a decision tree with kernel estimates," in E. Diday and Y. Lechevallier, Eds.,Symbolic-Numeric Data Analysis and Learning. New York: Nova Science, 1991.
[16] J. Lebbe, "Représentation des concepts en biologie et en médecine," Thèse, UniversitèParis-VI, Paris, 1991.
[17] B. Leclerc, "The residuation model for ordinal construction of dissimilarities and other valued objects," Rapport C.A.M.S. P.063, Maison des Sciences de l'Homme, Paris, 1990.
[18] R. S. Michalski, "A variable-valued logic system as applied to picture description and recognition," inProc. IFIF Working Conf. Graphic Languages, Vancouver, BC, Canada, 1972.
[19] R. S. Michalski, "A theory and a methodology of inductive learning," in R. S. Michalski, J. G. Carbonell, T. M. Mitchell, Eds.,Machine Learning I. Berlin: Springer Verlag, 1984, pp. 83-134.
[20] T. Mitchell, "Generalization as search,"Artificial Intell., vol. 18, pp. 203-226, 1982.
[21] M. Sebag and M. Schoenauer, "Incremental learning of rules and meta rules," in B. Porter and R. Mooney, Eds.,Proc. 7th Int. Conf. Machine Learning. San Mateo, CA: Morgan Kaufmann, 1990.
[22] R. Vignes, "Caractérisation automatique de groupes biologiques," Thèse, UniversitéParis-VI, Paris, 1991.
[23] R. Wille, "Restructuring lattice theory: An approach based on hierarchies of concepts," inOrdered Sets, I. Rival Ed. Dordrecht-Boston: Reidel, 1982, pp. 445-470.
[24] N. G. Zagoruiko and G. S. Lbov, "Algorithms of pattern recognition in a package of applied programs Oteks," inIJCPR, no. 4, Kyoto, Japan, 1978.

Index Terms:
knowledge representation; order structure; symbolic assertion objects; symbolic objects; data analysis driven formalism; propositional calculus; duality intension; assertion objects; lattice theory; Galois connection; multiple-valued data
Citation:
P. Brito, "Order Structure of Symbolic Assertion Objects," IEEE Transactions on Knowledge and Data Engineering, vol. 6, no. 5, pp. 830-835, Oct. 1994, doi:10.1109/69.317710
Usage of this product signifies your acceptance of the Terms of Use.