This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
A Partition Model Approach to Updating Universal Scheme Interfaces
April 1994 (vol. 6 no. 2)
pp. 316-330

The updating of relational databases has received extensive attention in the past few years. However, the various methods proposed present two main drawbacks: either the method cannot perform some update because of nondeterminism, or the method is deterministic but leads to counterintuitive results. In this paper, we use partition semantics to study updating in universal scheme interfaces. It is shown that, contrary to other approaches, the main difficulties are due to nondeterminism of deletions. We characterize when a deletion is deterministic or not, and we show how partition semantics allow for choices in certain cases of nondeterminism.

[1] S. Abiteboul, "Updates, a new frontier," inProc. 2nd Int. Conf. Data Base Theory, LNCS. New York: Springer-Verlag, 1988.
[2] P. Atzeni and R. Torlone, "Updating databases in the weak instance model," inProc. ACM SIGACT-SIGMOD-SIGART, Symp. on Principles of Database System, 1989.
[3] P. Atzeni and R. Torlone, "Approaches to updates over weak instances," inProc. MFDBS'89, Visegrad, 1989.
[4] P. A. Bernstein, "Synthesizing third normal form relations from functional dependencies,"ACM Trans. Database Syst., vol. 1, no. 4, pp. 277-298, Dec. 1976.
[5] L. Cholvy, "Misesàjour dans les bases de connaissances," in 5'Journées Bases de Données Avancées. Genève, 1989.
[6] S. Cosmadakis, P. Kanellakis, and N. Spyratos, "Partition semantics for relations," inProc. ACM PODS, 1985.
[7] R. Fagin, J. D. Ullman, and M. Vardi, "On the semantics of updates in databases," inProc. ACM SIGACT-SIGMOD Symp. Principles Database Syst., Atlanta, GA, 1983, pp. 352-365.
[8] G. E. Hughes and M. J. Cresswell,An Introduction to Modal Logic. London and New York: Methren, 1978.
[9] D. Laurent and N. Spyratos, "Partition semantics for incomplete information in relational databases," inProc. ACM SIGMOD Int. Conf., Chicago, 1988.
[10] D. Laurent and N. Spyratos, "Introducing negative information in relational databases," inProc. MFCS'88 Int. Conf., Karlovy Vary, LNCS, Springer-Verlag 324, 1988.
[11] Ch. Lécluse, "Une sémantique ensembliste pour les bases de données-application au modèle relationnel," Ph.D. dissertation, Univ. of Paris-Sud, Paris, France, 1987.
[12] Ch. Lécluse and N. Spyratos, "Updating weak instances using partition semantics," Tech. Rep. LRI, no. 364, Orsay, 1988.
[13] Ch. Lécluse and N. Spyratos, "Implementing queries and updates on universal scheme interfaces," inProc. VLDB Int. Conf., Los Angeles, 1988.
[14] D. Maier,The Theory of Relational Databases. Rockville, MD: Computer Science Press, 1983.
[15] D. Maier, J. Ullman, and M. Vardi, "On the foundations of the universal-relation model,"ACM Trans. Database Syst., pp. 283-308, Sept. 1984.
[16] V. Phan Luong, M. G. H. Romdane, and N. Spyratos, "Querying universal interfaces under extension chase semantics," Tech. Rep. LRI, no. 612, Orsay, 1990.
[17] E. Pichat and C. Delobel, "Designing third normal form for relational database schema," Tech. Rep. IMAG, no. 149, Genoble, France, 1979.
[18] R. Reiter, "Towards a logical reconstruction of relational database theory," inOn Conceptual Modelling, M. L. Brodie, J. Mylopoulos, and J. W. Schmidt, eds. New York: Springer-Verlag, 1984.
[19] N. Spyratos, "The partition model: A deductive database model,"ACM Trans. Database Syst., vol. 12, no. 1, 1987.

Index Terms:
relational databases; relational algebra; database theory; partition model; universal scheme interface updating; relational database updating; nondeterminism; counterintuitive results; partition semantics; deletions; universal relation; relational model; functional dependency
Citation:
D. Laurent, N. Spyratos, "A Partition Model Approach to Updating Universal Scheme Interfaces," IEEE Transactions on Knowledge and Data Engineering, vol. 6, no. 2, pp. 316-330, April 1994, doi:10.1109/69.277774
Usage of this product signifies your acceptance of the Terms of Use.