This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
A Framework for Knowledge Discovery and Evolution in Databases
December 1993 (vol. 5 no. 6)
pp. 973-979

A concept for knowledge discovery and evolution in databases is described. The key issues include: using a database query to discover new rules; using not only positive examples (answer to a query), but also negative examples to discover new rules; and harmonizing existing rules with the new rules. A tool for characterizing the exceptions in databases and evolving knowledge as a database evolves is developed.

[1] Y. Cai, "An attribute-oriented approach for learning classification rules from relational databases," inProc. 6th Int. Conf. Data Engineering, Los Angeles, CA, Feb. 1990, pp. 281-288.
[2] K. C. Chan and A. K. Wong, "A statistical technique for extracting classificatory knowledge from databases," inKnowledge Discovery in Databases, G. Piatetsky-Shapiro and W. J. Frawley, Eds. Cambridge, MA: MIT Press, 1991.
[3] D. K. Chiu, A. K. Wong, and B. Cheung, "Information discovery through hierarchical maximum entropy discretization and synthesis," inKnowledge Discovery in Databases, G. Piatetsky-Shapiro and W. J. Frawley, Eds. Cambridge, MA: MIT Press, 1991.
[4] N. Eisinger, H. J. Ohlbach, and A. Pracklein, "Reduction rules for resolution based systems,"Artificial Intell., vol. 50, pp. 141-181, 1991.
[5] T. Gaasterland, P. Godfrey, and J. Minker, "Relaxation as a platform for cooperative answering,"J. Intell. Inform. Syst., vol. 1, pp. 293-321, 1992.
[6] B. Gaines, "Extracting knowledge from data," inProc. IJCAI-89 Workshop Knowledge Disc. in Databases, 1989, pp. 109-116.
[7] B. Gaines, "The trade-off between knowledge and data in knowledge acquisition," inKnowledge Discovery in Databases, G. Piatetsky-Shapiro and W. J. Frawley, Eds. Cambridge, MA: MIT Press, 1991, pp. 491-506.
[8] A. Ginsberg, "Knowledge base refinement and theory revision," inProc. 6th Int. Conf. Machine Learning, 1989, pp. 260-265.
[9] K. Kaufman, R. Michalski, and L. Kerschberg, "Mining for knowledge in databases: Goals and general description of the inlen system," inProc. IJCAI-89 Workshop Knowledge Disc. in Databases, 1989, pp. 158-172.
[10] D. Kulkarni and H. Simon, "The role of experimentation in scientific theory revision," inProc. 6th Int. Conf. Machine Learning, 1989, pp. 278-283.
[11] D. Lubinsky, "Discovery from databases: A review of ai and statistical techniques," inProc. IJCAI-89 Workshop Knowledge Disc. in Databases, 1989, pp. 204-218.
[12] R. S. Michalski and J. B. Larson, "Incremental generation of VLI hypotheses: The underlying methodology and the description of the program AQ11," Univ. Illinois, Dep. Comput. Sci., Tech. Rep. VIVCDCS-F-83-905, 1983.
[13] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell,Machine Learning. Los Altos: Morgan Kaufman, 1983.
[14] A. Motro, "FLEX: A tolerant and cooperative user interface to database,"IEEE Trans. Knowledge and Data Eng., vol. 2, 1990.
[15] L. M. Pereira, J. J. Alfere, and J. N. Aparicio, "Contradiction removal within well founded semantics," inProc. 1st Int. Workshop Logic Programming and Non-Monotonic Reasoning, A. Nerock, W. Marek and V. S. Subrahmanian, Eds. Cambridge, MA: MIT Press, 1991, pp. 105-119.
[16] G. Piatetsky-Shapiro, "Discovery, analysis, and presentation of strong rules, " inKnowledge Discovery in Databases, G. Piatetsky-Shapiro and W. J. Frawley, Eds. Cambridge, MA: MIT Press, 1991, pp. 229-248.
[17] A. Pirotte and D. Roelants, "Constraints for improving the generation of intensional answers in a deductive database," inProc. IEEE Comput. Soc. 5th Int. Conf. Data Eng., 1989, pp. 652-659.
[18] J. R. Quinlan, "Induction of decision trees,"Machine Learning, vol. 1, no. 1, pp. 81-106, 1986.
[19] J. C. Schlimmer, T. M. Mitchell, and J. McDermott, "Justification-based refinement of expert knowledge," inKnowledge Discovery in Databases, G. Piatetsky-Shapiro and W. J. Frawley, Eds. Cambridge, MA: MIT Press, 1991, pp. 397-409.
[20] P. Smyth and R. M. Goodman, "Rule induction using information theory, " inKnowledge Discovery in Databases, G. Piatetsky-Shapiro and W. J. Frawley, Eds. Cambridge: MA, MIT Press, 1991, pp. 159-176.
[21] W. Ziarko, "The discovery, analysis, and representation of data dependencies in databases," inKnowledge Discovery in Databases, G. Piatetsky-Shapiro and W. J. Frawley, Eds. Cambridge, MA: MIT Press, 1991, pp. 195-212.

Index Terms:
knowledge discovery; knowledge evolution; databases; database query; rules; exceptions; deductive database; relational database; database theory; deductive databases; query processing; relational databases
Citation:
J.P. Yoon, L. Kerschberg, "A Framework for Knowledge Discovery and Evolution in Databases," IEEE Transactions on Knowledge and Data Engineering, vol. 5, no. 6, pp. 973-979, Dec. 1993, doi:10.1109/69.250080
Usage of this product signifies your acceptance of the Terms of Use.