The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.01 - First Quarter (2013 vol.6)
pp: 117-122
G. Cirio , IRISA Rennes, INRIA, Rennes, France
M. Marchal , IRISA Rennes, INRIA, Rennes, France
Anatole Lécuyer , IRISA Rennes, INRIA, Rennes, France
J. R. Cooperstock , Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada
ABSTRACT
We introduce the use of vibrotactile feedback as a rendering modality for solid-fluid interaction, based on the physical processes that generate sound during such interactions. This rendering approach enables the perception of vibrotactile feedback from virtual scenarios that resemble the experience of stepping into a water puddle or plunging a hand into a volume of fluid.
INDEX TERMS
Cavity resonators, Rendering (computer graphics), Atmospheric modeling, Materials, Vibrations, Computational modeling, Mathematical model,sound generation, Vibrotactile rendering, computational fluid dynamics, air bubbles
CITATION
G. Cirio, M. Marchal, Anatole Lécuyer, J. R. Cooperstock, "Vibrotactile Rendering of Splashing Fluids", IEEE Transactions on Haptics, vol.6, no. 1, pp. 117-122, First Quarter 2013, doi:10.1109/TOH.2012.34
REFERENCES
[1] A.M. Okamura, J.T. Dennerlein, and R.D. Howe, "Vibration Feedback Models for Virtual Environments," Proc. IEEE Int'l Conf. Robotics and Automation, pp. 674-679, 1998.
[2] A.M. Okamura, M.R. Cutkosky, and J.T. Dennerlein, "Reality-Based Models for Vibration Feedback in Virtual Environments," IEEE/ASME Trans. Mechatronics, vol. 6, no. 3, pp. 245-252, Sept. 2001.
[3] K.J. Kuchenbecker, J. Fiene, and G. Niemeyer, "Improving Contact Realism through Event-Based Haptic Feedback," IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 2, pp. 219-230, Mar./Apr. 2006.
[4] J. Romano and K. Kuchenbecker, "Creating Realistic Virtual Textures from Contact Acceleration Data," IEEE Trans. Haptics, vol. 5, no. 2, pp. 109-119, 2012.
[5] R. Nordahl, A. Berrezag, S. Dimitrov, L. Turchet, V. Hayward, and S. Serafin, "Preliminary Experiment Combining Virtual Reality Haptic Shoes and Audio Synthesis," Proc. Int'l Conf. Haptics: Generating and Perceiving Tangible Sensations, pp. 123-129, 2010.
[6] Y. Visell, J. Cooperstock, B. Giordano, K. Franinovic, A. Law, S. McAdams, K. Jathal, and F. Fontana, "A Vibrotactile Device for Display of Virtual Ground Materials in Walking," Proc. Sixth Int'l Conf. Haptics: Perception, Devices and Scenarios, pp. 420-426, 2008.
[7] Y. Visell, J. Cooperstock, and K. Franinovic, "The EcoTile: An Architectural Platform for Audio-Haptic Simulation in Walking," Proc. Fourth Int'l Conf. Enactive Interfaces, 2007.
[8] S. Papetti, F. Fontana, M. Civolani, A. Berrezag, and V. Hayward, "Audio-Tactile Display of Ground Properties Using Interactive Shoes," Proc. Fifth Int'l Conf. Haptic and Audio Interaction Design, pp. 117-128, 2010.
[9] H. Yao and V. Hayward, "Design and Analysis of a Recoil-Type Vibrotactile Transducer," J. Acoustical Soc. Am., vol. 128, no. 2, p. 619, 2010.
[10] Y. Visell, A. Law, J. Ip, S. Smith, and J. Cooperstock, "Interaction Capture in Immersive Virtual Environments via an Intelligent Floor Surface," Proc. IEEE Virtual Reality Conf., pp. 313-314, 2010.
[11] R. Pedrosa and K.E. MacLean, "Perception of Sound Renderings via Vibrotactile Feedback," Proc. IEEE World Haptics Conf. (WHC '11), pp. 361-366, June 2011.
[12] M. Rath, F. Avanzini, N. Bernardini, G. Borin, F. Fontana, L. Ottaviani, and D. Rocchesso, "An Introductory Catalog of Computer-Synthesized Contact Sounds, in Real-Time," Proc. Colloquium Musical Informatics Processing, pp. 103-108, 2003.
[13] E.G. Richardson, "The Sounds of Impact of a Solid on a Liquid Surface," Proc. Physical Soc. Section B, vol. 68, no. 8, pp. 541-547, 1955.
[14] K.v.d. Doel, "Physically Based Models for Liquid Sounds," ACM Trans. Applied Perception, vol. 2, no. 4, pp. 534-546, 2005.
[15] M. Minnaert, "On Musical Air-Bubbles and the Sounds of Running Water," Philosophical Magazine Series 7, vol. 16, no. 104, pp. 235-248, 1933.
[16] C. Drioli and D. Rocchesso, "Acoustic Rendering of Particle-Based Simulation of Liquids in Motion," J. Multimodal User Interfaces, vol. 5, no. 3, pp. 187-195, 2012.
[17] W. Moss, H. Yeh, J. Hong, M.C. Lin, and D. Manocha, "Sounding Liquids: Automatic Sound Synthesis from Fluid Simulation," ACM Trans. Graphics, vol. 29, no. 3, pp. 1-13, 2010.
[18] J.J. Monaghan, "Smoothed Particle Hydrodynamics," Ann. Rev. Astronomy and Astrophysics, vol. 30, no. 1, pp. 543-574, 1992.
[19] M.F. Bear, B.W. Connors, and M.A. Paradiso, Neuroscience: Exploring the Brain, third ed. Lippincott Williams & Wilkins, 2006.
[20] M. Hollins, S. Bensmaïa, and E. Roy, "Vibrotaction and Texture Perception," Behavioural Brain Research, vol. 135, no. 2, pp. 51-56, 2002.
[21] G.J. Franz, "Splashes as Sources of Sound in Liquids," The J. Acoustical Soc. Am., vol. 31, no. 8, pp. 1080-1096, 1959.
[22] M. Muller, D. Charypar, and M. Gross, "Particle-Based Fluid Simulation for Interactive Applications," Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp. 154-159, 2003.
[23] G. Cirio, M. Marchal, S. Hillaire, and A. Lecuyer, "Six Degrees-of-Freedom Haptic Interaction with Fluids," IEEE Trans. Visualization and Computer Graphics, vol. 17, no. 11, pp. 1714-1727, Nov. 2011.
[24] M. Muller, B. Solenthaler, R. Keiser, and M. Gross, "Particle-Based Fluid-Fluid Interaction," Proc. ACM SIGGRAPH/Eurographics Symp. Comp. Animation, pp. 237-244, 2005.
[25] M. Lesser, "Thirty Years of Liquid Impact Research: a Tutorial Review," Wear, vol. 186-187, pp. 28-34, 1995.
[26] S. Howison, J. Ockendon, and J. Oliver, "Deep- and Shallow-Water Slamming at Small and Zero Deadrise Angles," J. Eng. Math., vol. 42, no. 3, pp. 373-388, 2002.
[27] V.L. Guruswamy, J. Lang, and W. Lee, "IIR Filter Models of Haptic Vibration Textures," IEEE Trans. Instrumentation and Measurement, vol. 60, no. 1, pp. 93-103, Jan. 2011.
[28] M.S. Longuet-Higgins, "An Analytic Model of Sound Production by Raindrops," J. Fluid Mechanics, vol. 214, pp. 395-410, 1990.
44 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool