The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.01 - January-March (2009 vol.2)
pp: 52-56
Chih-Hung King , UCLA, Los Angeles
Martin O. Culjat , UCLA, Los Angeles
Miguel L. Franco , UCLA, Los Angeles
James W. Bisley , UCLA, Los Angeles
Gregory P. Carman , UCLA, Los Angeles
Erik P. Dutson , UCLA, Los Angeles
Warren S. Grundfest , UCLA, Los Angeles
ABSTRACT
A multi-element tactile feedback (MTF) system has been developed to translate the force distribution, in magnitude and position, from 3x2 sensor arrays on surgical robotic end-effectors to the fingers via 3x2 balloon tactile displays. High detection accuracies from perceptual tests (> 96%) suggest that MTF may be an effective means to improve robotic control.
INDEX TERMS
Tactile display, Real time control, Telemanipulation, System design and analysis, Surgical robotics
CITATION
Chih-Hung King, Martin O. Culjat, Miguel L. Franco, James W. Bisley, Gregory P. Carman, Erik P. Dutson, Warren S. Grundfest, "A Multielement Tactile Feedback System for Robot-Assisted Minimally Invasive Surgery", IEEE Transactions on Haptics, vol.2, no. 1, pp. 52-56, January-March 2009, doi:10.1109/TOH.2008.19
REFERENCES
[1] G.H. Ballantyne, “Robotic Surgery, Telerobotic Surgery, Telepresence, and Telementoring,” Surgical Endoscopy, vol. 16, no. 10, pp. 1389-1402, 2002.
[2] K. Moorthy, Y. Munz, A. Dosis, J. Hernandez, S. Martin, F. Bello, T. Rockall, and A. Darzi, “Dexterity Enhancement with Robotic Surgery,” Surgical Endoscopy, vol. 18, no. 5, pp. 790-795, 2004.
[3] J. Marescaux, J. Leroy, M. Gagner, F. Rubino, D. Mutter, M. Vix, S.E. Butner, and M.K. Smith, “Transatlantic Robot-Assisted Telesurgery,” Nature, vol. 413, no. 6854, pp. 379-380, 2001.
[4] A.R. Lanfranco, A.E. Castellanos, J.P. Desai, and W.C. Meyers, “Robotic Surgery—A Current Perspective,” Annals of Surgery, vol. 239, pp. 14-21, 2004.
[5] G.C. Burdea, Force and Touch Feedback for Virtual Reality, pp. 3-4. John Wiley & Sons, 1996.
[6] A.M. Okamura, “Methods for Haptic Feedback in Teleoperated Robot-Assisted Surgery,” Industrial Robot, vol. 31, no. 6, pp. 499-508, 2004.
[7] J. Rosen, J.D. Brown, L. Chang, M. Barreca, M. Sinanan, and B. Hannaford, “The BlueDRAGON—A System for Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In Vivo,” Proc. IEEE Int'l Conf. Robotics and Automation (ICRA '02), pp. 1876-1881, 2002.
[8] M. Tavakoli, R.V. Patel, and M. Moallem, “Haptic Interaction in Robot-Assisted Endoscopic Surgery: A Sensorized End-Effector,” Int'l J. Medical Robotics and Computer Assisted Surgery, vol. 1, pp. 53-63, 2005.
[9] A. Bicchi, G. Canepa, D. De Rossi, P. Iacconi, and E.P. Scillingo, “ASensorized Minimally Invasive Surgery Tool for Detecting Tissual Elastic Properties,” Proc. IEEE Int'l Conf. Robotics and Automation (ICRA '96), pp. 884-888, 1996.
[10] U. Seibold, B. Kubler, and G. Hirzinger, “Prototype of Instrument for Minimally Invasive Surgery with 6-Axis Force Sensing Capability,” Proc. IEEE Int'l Conf. Robotics and Automation (ICRA '05), pp. 496-501, 2005.
[11] T. Hu, G. Tholey, J.P. Desai, and A.E. Castellanos, “Evaluation of a Laparoscopic Grasper with Force Feedback,” Surgical Endoscopy, vol. 18, no. 5, pp. 863-867, 2004.
[12] J. Rosen, B. Hannaford, M.P. MacFarlane, and M.N. Sinanan, “Force Controlled and Teleoperated Endoscopic Grasper for Minimally Invasive Surgery—Experimental Performance Evaluation,” IEEE Trans. Biomedical Eng., vol. 46, no. 10, pp. 1212-1221, 1999, doi: 10.1109/10.790498.
[13] A.M. Okamura, R.J. Webster, J.T. Nolin, K.W. Johnson, and H. Jafry, “The Haptic Scissors: Cutting in Virtual Environments,” Proc. IEEE Int'l Conf. Robotics and Automation (ICRA '03), pp. 828-833, 2003.
[14] M.P. Ottensmeyer, E. Ben-Ur, and J.K. Salisbury, “Input and Output for Surgical Simulation: Devices to Measure Tissue Properties In Vivo and a Haptic Interface for Laparoscopy Simulators,” Proc. Medical Meets Virtual Reality Conf. (MMVR8 '00), vol. 70, pp. 236-242, 2000.
[15] C. Basdogan, C.H. Ho, and M.A. Srinivasan, “Virtual Environments for Medical Training: Graphical and Haptic Simulation of Laparoscopic Common Bile Duct Exploration,” IEEE/ASME Trans. Mechatronics, vol. 6, pp. 269-285, 2001.
[16] P.J. Berkelman, L.L. Whitcomb, R.H. Taylor, and P. Jensen, “A Miniature Instrument Tip Force Sensor for Robot/Human Cooperative Microsurgical Manipulation with Enhanced Force Feedback,” Proc. Third Int'l Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI '00), pp. 897-906, 2000.
[17] D.F. Louw, T. Fielding, P.B. McBeth, D. Gregoris, P. Newhook, and G.R. Sutherland, “Surgical Robotics: A Review and Neurosurgical Prototype Development,” Neurosurgery, vol. 54, pp. 525-537, 2004.
[18] C.R. Wagner, N. Stylopoulus, and R.D. Howe, “The Role of Force Feedback in Surgery: Analysis of Blunt Dissection,” Proc. 10th Symp. Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS '02), pp. 68-74, 2002.
[19] G. Tholey, J.P. Desai, and A.E. Castellanos, “Force Feedback Plays a Significant Role in Minimally Invasive Surgery: Results and Analysis,” Annals of Surgery, vol. 241, no. 1, pp. 102-109, 2005.
[20] C.R. Wagner and R.D. Howe, “Force Feedback Benefit Depends on Experience in Multiple Degree of Freedom Robotic Surgery Task,” IEEE Trans. Robotics, vol. 23, no. 6, pp. 1235-1240, Dec. 2007, doi: 10.1109/TRO.2007.904891.
[21] M. Kitagawa, D. Dokko, A.M. Okamura, and D.D. Yuh, “Effect of Sensory Substitution on Suture-Manipulation Forces for Robotic Surgical Systems,” J. Thoracic and Cardiovascular Surgery, vol. 129, pp. 151-158, 2005.
[22] C.H. King, M.O. Culjat, M.L. Franco, C.E. Lewis, E. Dutson, W.S. Grundfest, and J.W. Bisley, “Tactile Feedback Induces Reduced Natural Grasping Force in Robot-Assisted Surgery,” IEEE Trans. Haptics, in press.
[23] M.O. Culjat, C.H. King, M.L. Franco, E. Dutson, and W.S. Grundfest, “A Tactile Feedback System for Robotic Surgery,” Proc. 30th Ann. Int'l Conf. IEEE Eng. Medicine and Biology Soc. (EMBS '08), Aug. 2008.
[24] A. Bicchi, E.P. Scilingo, and D. De Rossi, “Haptic Discrimination of Softness in Teleoperation: The Role of the Contact Area Spread Rate,” IEEE Trans. Robotics and Automation, vol. 16, pp. 496-504, 2000, doi: 10.1109/70.880800.
[25] R.D. Howe, W.J. Peine, D.A. Kantarinis, and J.S. Son, “Remote Palpation Technology,” IEEE Eng. Medicine and Biology Magazine, vol. 14, no. 3, pp.318-323, 1995.
[26] C.H. King, A.T. Higa, M.O. Culjat, S.H. Han, J.W. Bisley et al., “A Pneumatic Haptic Feedback Actuator Array for Robotic Surgery or Simulation,” Proc. Medical Meets Virtual Reality Conf. (MMVR15 '07), pp.217-222, 2007.
[27] C.H. King, M.O. Culjat, M. Franco, J.W. Bisley, E. Dutson, and W.S. Grundfest, “Optimization of a Pneumatic Balloon Tactile Display for Robotic Surgery Based on Human Perception,” IEEE Trans. Biomedical Eng., vol. 55, no. 11, pp. 2593-2600, 2008.
[28] C.H. King, M. Franco, M.O. Culjat, J.W. Bisley, E. Dutson, and W.S. Grundfest, “Fabrication and Characterization of a Balloon Actuator Array for Haptic Feedback in Robotic Surgery,” ASME J. Medical Devices, vol. 2, no. 4, pp. 041006-1-041006-7, 2008.
[29] M.O. Culjat, C.H. King, M.L. Franco, J.W. Bisley, E. Dutson, and W.S. Grundfest, “Pneumatic Balloon Actuators for Tactile Feedback in Robotic Surgery,” Industrial Robot, vol. 35, no. 5, pp. 449-455, 2008.
16 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool