The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.02 - Feb. (2014 vol.20)
pp: 196-210
Oliver Rubel , Comput. Res. Div., Lawrence Berkeley Nat. Lab. (LBNL), Berkeley, CA, USA
Cameron G. R. Geddes , Accel. & Fusion Res. Div., Lawrence Berkeley Nat. Lab. (LBNL), Berkeley, CA, USA
Min Chen , Dept. of Phys. & Astron., Shanghai Jiao Tong Univ., Shanghai, China
Estelle Cormier-Michel , Tech-X Corp., Boulder, CO, USA
E. Wes Bethel , Comput. Res. Div., Lawrence Berkeley Nat. Lab. (LBNL), Berkeley, CA, USA
ABSTRACT
Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam, and to investigate transverse particle loss.
INDEX TERMS
Feature extraction, Acceleration, Particle beams, Linear particle accelerator, Plasmas, Analytical models, Plasma waves,visualization, Feature extraction, Acceleration, Particle beams, Linear particle accelerator, Plasmas, Analytical models, Plasma waves, plasma-based particle acceleration, Feature detection, feature-based analysis
CITATION
Oliver Rubel, Cameron G. R. Geddes, Min Chen, Estelle Cormier-Michel, E. Wes Bethel, "Feature-Based Analysis of Plasma-Based Particle Acceleration Data", IEEE Transactions on Visualization & Computer Graphics, vol.20, no. 2, pp. 196-210, Feb. 2014, doi:10.1109/TVCG.2013.107
REFERENCES
[1] S. Byna, J. Chou, O. Rübel, Prabhat, H. Karimabadi, W.S. Daughton, V. Roytershteyn, E.W. Bethel, M. Howison, K.-J. Hsu, K.-W. Lin, A. Shoshani, A. Uselton, and K. Wu, “Parallel I/O, Analysis, and Visualization of a Trillion Particle Simulation,” Proc. Int'l Conf. High Performance Computing, Networking, Storage and Analysis (SuperComputing '12), Nov. 2012.
[2] O. Rübel, Prabhat, K. Wu, H. Childs, J. Meredith, C.G.R. Geddes, E. Cormier-Michel, S. Ahern, G.H. Weber, P. Messmer, H. Hagen, B. Hamann, and E.W. Bethel, “High Performance Multivariate Visual Data Exploration for Extemely Large Data,” Proc. ACM/IEEE Conf. Supercomputing (SuperComputing '08), Nov. 2008.
[3] E. Esarey, C.B. Schroeder, and W.P. Leemans, “Physics of Laser-Driven Plasma-Based Electron Accelerators,” Rev. Modern Physics, vol. 81, pp. 1229-1285, 2009.
[4] C.G.R. Geddes, “Plasma Channel Guided Laser Wakefield Accelerator,” PhD dissertation, UC Berkeley, 2005.
[5] LOASIS, http:/loasis.lbl.gov/, 2013.
[6] C.G.R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. Leemans, “High-Quality Electron Beams from a Laser Wakefield Accelerator Using Plasma-Channel Guiding,” Nature, vol. 438, pp. 538-541, 2004.
[7] W.P. Leemans, B. Nagler, A.J. Gonsalves, C. Toth, K. Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, and S.M. Hooker, “GeV Electron Beams from a Centimetre-Scale Accelerator,” Nature Physics, vol. 2, pp. 696-699, 2006.
[8] E. Esarey, R.F. Hubbard, W.P. Leemans, A. Ting, and P. Sprangle, “Electron Injection into Plasma Wake Fields by Colliding Laser Pulses,” Physical Rev. Letters, vol. 79, no. 14, Oct. 1997.
[9] C. Nieter and J.R. Cary, “VORPAL: A Versatile Plasma Simulation Code,” J. Computational Physics, vol. 196, no. 2, pp. 448-473, 2004.
[10] C.K. Birdsall and A. Langdon, Plasma Physics via Computer Simulation, Series in Plasma Physics, first ed. Taylor & Francis, Inc., Oct. 2004.
[11] D.R. Lipa, R.S. Laramee, S.J. Cox, J.C. Roberts, R. Walker, M.A. Borkin, and H. Pfister, “Visualization for the Physical Sciences,” Computer Graphics Forum, vol. 31, no. 8, pp. 2317-2347, 2012.
[12] Root Is Available from http://root.cern.chdrupal/, 2013.
[13] IDL Is Available from http://tinyurl.com7x8f5gf, 2013.
[14] VisIt Is Available from https://wci.llnl.gov/codesvisit/, 2013.
[15] R.A. Fonseca, S.F. Martins, L.O. Silva, J.W. Tonge, F.S. Tsung, and W.B. Mori, “One-to-One Direct Modeling of Experiments and Astrophysical Scenarios: Pushing the Envelope on Kinetic Plasma Simulations,” Plasma Physics and Controlled Fusion, vol. 50, p. 124034, Nov. 2008.
[16] R.A. Fonseca, L.O. Silva, F.S. Tsung, V.K. Decyk, W. Lu, C. Ren, W.B. Mori, S. Deng, S. Lee, T. Katsouleas, and J.C. Adam, “OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators,” Proc. Int'l Conf. Computational Science (ICCS '02), pp. 342-351, 2002.
[17] S.F. Martins, R.A. Fonseca, L.O. Silva, and W.B. Mori, “On Dynamics and Acceleration in Relativistic Shocks,” Astrophysical J. Letters, vol. 695, pp. L189-L193, Apr. 2009.
[18] A. Bagherjeiran and C. Kamath, “Graph-Based Methods for Orbit Classification,” Proc. SIAM Int'l Conf. Data Mining (SDM), 2006.
[19] N.S. Love and C. Kamath, “Image Analysis for the Identification of Coherent Structures in Plasma,” Proc. SPIE, vol. 6696, 2007.
[20] J. Hlína, V. Nwnicka, and J. Sonsky, “Identification of Dynamic Patterns and Their Velocities in Thermal Plasma Jets,” Czechoslovak J. Physics, vol. 54, no. 2, pp. 199-210, Feb. 2004.
[21] D. Ushizima, O. Rübel, Prabhat, G. Weber, E.W. Bethel, C. Aragon, C. Geddes, E. Cormier-Michel, B. Hamann, P. Messmer, and H. Hagen, “Automated Analysis for Detecting Beams in Laser Wakefield Simulations,” Proc. Seventh Int'l Conf. Machine Learning and Applications (ICMLA 08), pp. 382-387, 2008.
[22] O. Rübel, C.G.R. Geddes, E. Cormier-Michel, K. Wu, Prabhat, G.H. Weber, D.M. Ushizima, P. Messmer, H. Hagen, B. Hamann, and W. Bethel, “Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data,” IOP Computational Science & Discovery, vol. 2, no. 015005, p. 38, Nov. 2009.
[23] F.H. Post, B. Vrolijk, H. Hauser, R.S. Laramee, and H. Doleisch, “The State of the Art in Flow Visualisation: Feature Extraction and Tracking,” Computer Graphics Forum, vol. 22, pp. 775-792, 2003.
[24] M. Ferreira de Oliveira and H. Levkowitz, “From Visual Data Exploration to Visual Data Mining: A Survey,” IEEE Trans. Visualization & Computer Graphics, vol. 9, no. 3, pp. 378-394, July-Sept. 2003.
[25] BOOST Is Available from http:/www.boost.org/, 2013.
[26] FastBit Is Available from http://tinyurl.com73fm6dw, 2013.
[27] K. Wu, K. Stockinger, and A. Shosani, “Breaking the Curse of Cardinality on Bitmap Indexes,” Proc. 20th Int'l Conf. Scientific and Statistical Database (SSDBM), pp. 348-365, 2008.
[28] K. Stockinger, J. Shalf, K. Wu, and E.W. Bethel, “Query-Driven Visualization of Large Data Sets,” Proc. IEEE Visualization '05, pp. 167-174, Oct. 2005.
[29] H. Childs, E.S. Brugger, K.S. Bonnell, J.S. Meredith, M. Miller, B.J. Whitlock, and N. Max, “A Contract-Based System for Large Data Visualization,” Proc. IEEE Visualization '05, pp. 190-198, Oct. 2005.
[30] M. Chen, C. Geddes, E. Esarey, C.B. Schroeder, W.P. Leemans, E. Cormier-Michel, and D. Bruhwiler, “Simulation Studies on Electron Injection by Colliding Pulses and Density Modulation in Laser Plasma Accelerators,” Preparation.
[31] K. Wu, E. Otoo, and A. Shoshani, “On the Performance of Bitmap Indices for High Cardinality Attributes,” Proc. 30th Int'l Conf. Very Large Data Bases (VLDB), pp. 24-35, 2004.
116 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool