Issue No.09 - Sept. (2013 vol.19)
pp: 1438-1454
SungYe Kim , Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA
R. Maciejewski , Sch. of Comput., Inf., & Decision Syst. Eng., Arizona State Univ., Tempe, AZ, USA
A. Malik , Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA
Yun Jang , Dept. of Comput. Eng., Sejong Univ., Seoul, South Korea
D. S. Ebert , Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA
T. Isenberg , INRIA-Saclay, Univ. Paris-Sud, Orsay, France
We present Bristle Maps, a novel method for the aggregation, abstraction, and stylization of spatiotemporal data that enables multiattribute visualization, exploration, and analysis. This visualization technique supports the display of multidimensional data by providing users with a multiparameter encoding scheme within a single visual encoding paradigm. Given a set of geographically located spatiotemporal events, we approximate the data as a continuous function using kernel density estimation. The density estimation encodes the probability that an event will occur within the space over a given temporal aggregation. These probability values, for one or more set of events, are then encoded into a bristle map. A bristle map consists of a series of straight lines that extend from, and are connected to, linear map elements such as roads, train, subway lines, and so on. These lines vary in length, density, color, orientation, and transparencyâcreating the multivariate attribute encoding scheme where event magnitude, change, and uncertainty can be mapped as various bristle parameters. This approach increases the amount of information displayed in a single plot and allows for unique designs for various information schemes. We show the application of our bristle map encoding scheme using categorical spatiotemporal police reports. Our examples demonstrate the use of our technique for visualizing data magnitude, variable comparisons, and a variety of multivariate attribute combinations. To evaluate the effectiveness of our bristle map, we have conducted quantitative and qualitative evaluations in which we compare our bristle map to conventional geovisualization techniques. Our results show that bristle maps are competitive in completion time and accuracy of tasks with various levels of complexity.
Encoding, Image color analysis, Data visualization, Visualization, Equations, Spatiotemporal phenomena, Kernel,geovisualization, Data transformation and representation, data abstraction, illustrative visualization
SungYe Kim, R. Maciejewski, A. Malik, Yun Jang, D. S. Ebert, T. Isenberg, "Bristle Maps: A Multivariate Abstraction Technique for Geovisualization", IEEE Transactions on Visualization & Computer Graphics, vol.19, no. 9, pp. 1438-1454, Sept. 2013, doi:10.1109/TVCG.2013.66
[1] A. MacEachren, D. Xiping, F. Hardisty, D. Guo, and G. Lengerich, "Exploring High-D Spaces with Multiform Matrices and Small Multiples," Proc. IEEE Symp. Information Visualization (InfoVis), pp. 31-38, 2003, IEEE CS, doi: 10.1109/INFVIS.2003.1249006.
[2] C. North and B. Shneiderman, "Snap-Together Visualization: A User Interface for Coordinating Visualizations via Relational Schemata," Proc. Working Conf. Advanced Visual Interfaces (AVI), pp. 128-135, 2000, ACM, doi: 10.1145/345513.345282.
[3] C. Weaver, "Cross-Filtered Views for Multidimensional Visual Analysis," IEEE Trans. Visualization and Computer Graphics, vol. 16, no. 2, pp. 192-204, Mar./Apr. 2010, doi: 10.1109/TVCG.2009.94.
[4] D.S. Ebert, R.M. Rohrer, C.D. Shaw, P. Panda, J.M. Kukla, and D.A. Roberts, "Procedural Shape Generation for Multi-Dimensional Data Visualization," Computers & Graphics, vol. 24, no. 3, pp. 375-384, June 2000, doi: 10.1016/S0097-8493(00)00033-9.
[5] S. Bachthaler and D. Weiskopf, "Continuous Scatterplots," IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 6, pp. 1428-1435, Nov./Dec. 2008, doi: 10.1109/TVCG.2008.119.
[6] R. Maciejewski, S. Rudolph, R. Hafen, A.M. Abusalah, M. Yakout, M. Ouzzani, W.S. Cleveland, S.J. Grannis, and D.S. Ebert, "A Visual Analytics Approach to Understanding Spatiotemporal Hotspots," IEEE Trans. Visualization and Computer Graphics, vol. 16, no. 2, pp. 205-220, Mar./Apr. 2010, doi: 10.1109/TVCG.2009.100.
[7] J.J. van Wijk and A. Telea, "Enridged Contour Maps," Proc. Conf. Visualization (VIS), pp. 69-74, 2001, IEEE CS, doi: 10.1109/VISUAL.2001.964495.
[8] R.J. Phillips and L. Noyes, "An Investigation of Visual Clutter in the Topographic Base of a Geological Map," Cartographic J., vol. 19, no. 2, pp. 122-132, Dec. 1982, doi: 10.1179/000870482787073225.
[9] S. Openshaw, "The Modifiable Areal Unit Problem," Concepts and Techniques in Modern Geography, vol. 38, Geo Books, 1984.
[10] M. Swink and C. Speier, "Presenting Geographic Information: Effects of Data Aggregation, Dispersion, and Users' Spatial Orientation," Decision Sciences, vol. 30, no. 1, pp. 169-195, Jan. 1999, doi: 10.1111/j.1540-5915.1999.tb01605.x.
[11] C.L. Eicher and C.A. Brewer, "Dasymetric Mapping and Areal Interpolation: Implementation and Evaluation," Cartography and Geographic Information Science, vol. 28, no. 2, pp. 125-138, Apr. 2001, doi: 10.1559/152304001782173727.
[12] R. Spence, Information Visualization. Addison-Wesley, 2001.
[13] L. Wilkinson, The Grammar of Graphics, second ed. Springer-Verlag, 2005.
[14] A.M. MacEachren, How Maps Work: Representation, Visualization, and Design. Guilford Press, 1995.
[15] S. Chainey, L. Tompson, and S. Uhlig, "The Utility of Hotspot Mapping for Predicting Spatial Patterns of Crime," Security J., vol. 21, no. 1/2, pp. 4-28, Feb.-Apr. 2008, doi: 10.1057/
[16] B.W. Silverman, Density Estimation for Statistics and Data Analysis (Monographs on Statistics and Applied Probability), vol. 26, Chapman and Hall, 1986.
[17] C. Ahlberg and B. Shneiderman, "Visual Information Seeking Using the FilmFinder," Proc. Conf. Companion Human Factors in Computing Systems (CHI), pp. 433-434, 1994, ACM, doi: 10.1145/259963.260431.
[18] Y.-H. Fua, M.O. Ward, and E.A. Rundensteiner, "Structure-Based Brushes: A Mechanism for Navigating Hierarchically Organized Data and Information Spaces," IEEE Trans. Visualization and Computer Graphics, vol. 6, no. 2, pp. 150-159, Apr.-June 2000, doi: 10.1109/2945.856996.
[19] A. Dix and G. Ellis, "By Chance: Enhancing Interaction with Large Data Sets through Statistical Sampling," Proc. Working Conf. Advanced Visual Interfaces (AVI), pp. 167-176, 2002, ACM, doi: 10.1145/1556262.1556289.
[20] A. MacEachren, "Visualizing Uncertain Information," Cartographic Perspectives, vol. 13, pp. 10-19, 1992.
[21] R. Dunn, "A Dynamic Approach to Two-Variable Color Mapping," The Am. Statistician, vol. 43, no. 4, pp. 245-252, Nov. 1989, doi: 10.1080/00031305.1989.10475669.
[22] J. Olson, "Spectrally Encoded Two-Variable Maps," Annals Assoc. Am. Geographers, vol. 71, no. 2, pp. 259-276, June 1981, doi: 10.1111/j.1467-8306.1981.tb01352.x.
[23] A. MacEachren and D. DiBiase, "Animated Maps of Aggregate Data: Conceptual and Practical Problems," Cartography and Geographic Information Systems, vol. 18, no. 4, pp. 221-229, Oct. 1991, doi: 10.1559/152304091783786790.
[24] H. Hagh-Shenas, S. Kim, V. Interrante, and C. Healey, "Weaving Versus Blending: A Quantitative Assessment of the Information Carrying Capacities of Two Alternative Methods for Conveying Multivariate Data with Color," IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 6, pp. 1270-1277, Nov./Dec. 2007, doi: 10.1109/TVCG.2007.70623.
[25] T. Saito, H.N. Miyamura, M. Yamamoto, H. Saito, Y. Hoshiya, and T. Kaseda, "Two-Tone Pseudo Coloring: Compact Visualization for One-Dimensional Data," Proc. IEEE Symp. Information Visualization (InfoVis), pp. 173-180, 2005, IEEE CS, doi: 10.1109/INFOVIS.2005.35.
[26] M. Sips, J. Schneidewind, D.A. Keim, and H. Schumann, "Scalable Pixel-Based Visual Interfaces: Challenges and Solutions," Proc. 10th Int'l Conf. Information Visualization (IV), pp. 32-38, 2006, IEEE CS, doi: 10.1109/IV.2006.95.
[27] C. Panse, M. Sips, D. Keim, and S. North, "Visualization of Geo-Spatial Point Sets via Global Shape Transformation and Local Pixel Placement," IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 5, pp. 749-756, Sep./Oct. 2006, doi: 10.1109/TVCG.2006.198.
[28] D. Dorling, A. Barford, and M. Newman, "Worldmapper: The World as You've Never Seen It Before," IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 5, pp. 757-764, Sep./Oct. 2006, doi: 10.1109/TVCG.2006.202.
[29] P.C. Wong, K. Schneider, P. Mackey, H. Foote, G. Chin, R. Guttromson, and J. Thomas, "A Novel Visualization Technique for Electric Power Grid Analytics," IEEE Trans. Visualization and Computer Graphics, vol. 15, no. 3, pp. 410-423, May/June 2009, doi: 10.1109/TVCG.2008.197.
[30] D. Fisher, "Hotmap: Looking at Geographic Attention," IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 6, pp. 1184-1191, Nov./Dec. 2007, doi: 10.1109/TVCG.2007.70561.
[31] C. Tominski, P. Schulze-Wollgast, and H. Schumann, "3D Information Visualization for Time Dependent Data on Maps," Proc. Ninth Int'l Conf. Information Visualization (InfoVis), pp. 175-181, 2005, IEEE CS, doi: 10.1109/IV.2005.3.
[32] J. Bertin, Semiology of Graphics. ESRI Press, 2011.
[33] J. Tarbell, "Substrate," Web Site & Simulation, http://www. machinessubstrate/, 2003, Feb. 2012.
[34] T. Isenberg, "Visual Abstraction and Stylisation of Maps," Cartographic J., vol. 50, no. 1, pp. 8-18, Feb. 2013, doi: 10.1179/1743277412Y.0000000007.
[35] P. Rheingans, "Task-Based Color Scale Design," Proc. SPIE, vol. 3905, pp. 35-43, 2000, SPIE, doi: 10.1117/12.384882.
[36] C. Ware, "Color Sequences for Univariate Maps: Theory, Experiments and Principles," IEEE Computer Graphics and Applications, vol. 19, no. 5, pp. 41-49, Sep./Oct. 1988, doi: 10.1109/38.7760.
[37] C.A. Brewer, Designing Better Maps: A Guide for GIS Users. ESRI Press, 2005.
[38] M. Prasad, "Intersection of Line Segments," Graphics Gems II, J. Arvo, ed., pp. 7-9, Academic Press, 1991.
[39] A. Michotte, G. Thinès, and G. Crabbé, Les Complements Amodeux des Structures Perceptives (Amodal Completions of Perceptual Structures), Louvain: Institut de Psychologie del'Université de Louvain, France: Studia Psychologica, 1964.
[40] M.S. Farrar, Magic Squares. BookSurge Publishing, 1996.
[41] R.A. Likert, "A Technique for the Measurement of Attitudes," Archives of Psychology, vol. 22, no. 140, pp. 5-55, 1932.
[42] D. Acevedo and D. Laidlaw, "Subjective Quantification of Perceptual Interactions among Some 2D Scientific Visualization Methods," IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 5, pp. 1133-1140, Sept. 2006, doi: 10.1109/TVCG.2006.180.
[43] M. Stone, "In Color Perception, Size Matters," IEEE Computer Graphics & Applications, vol. 32, no. 2, pp. 8-13, Mar./Apr. 2012, doi: 10.1109/MCG.2012.37.