The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.07 - July (2013 vol.19)
pp: 1172-1184
Youyi Zheng , Geometric Modeling & Sci. Visualization Center, King Abdullah Univ. of Sci. & Technol., Thuwal, Saudi Arabia
Chiew-Lan Tai , Dept. of Comput. Sci. & Eng., Hong Kong Univ. of Sci. & Technol., Kowloon, China
E. Zhang , Sch. of Electr. Eng. & Comput. Sci., Oregon State Univ., Corvallis, OR, USA
Pengfei Xu , Dept. of Comput. Sci. & Eng., Hong Kong Univ. of Sci. & Technol., Kowloon, China
ABSTRACT
This paper introduces a simple yet effective shape analysis mechanism for geometry processing. Unlike traditional shape analysis techniques which compute descriptors per surface point up to certain neighborhoods, we introduce a shape analysis framework in which the descriptors are based on pairs of surface points. Such a pairwise analysis approach leads to a new class of shape descriptors that are more global, discriminative, and can effectively capture the variations in the underlying geometry. Specifically, we introduce new shape descriptors based on the isocurves of harmonic functions whose global maximum and minimum occur at the point pair. We show that these shape descriptors can infer shape structures and consistently lead to simpler and more efficient algorithms than the state-of-the-art methods for three applications: intrinsic reflectional symmetry axis computation, matching shape extremities, and simultaneous surface segmentation and skeletonization.
INDEX TERMS
Shape, Harmonic analysis, Geometry, Surface treatment, Shape measurement, Complexity theory, Face, segmentation and skeletonization, Shape analysis, pairwise harmonics, intrinsic symmetry, shape correspondence
CITATION
Youyi Zheng, Chiew-Lan Tai, E. Zhang, Pengfei Xu, "Pairwise Harmonics for Shape Analysis", IEEE Transactions on Visualization & Computer Graphics, vol.19, no. 7, pp. 1172-1184, July 2013, doi:10.1109/TVCG.2012.309
REFERENCES
[1] A.D. Bimbo and P. Pala, “Content-Based Retrieval of 3D Models,” ACM Trans. Multimedia Computing Comm. Applications, vol. 2, pp. 20-43, 2006.
[2] R. Gal, O. Sorkine, N.J. Mitra, and D. Cohen-Or, “iWIRES: An Analyze-and-Edit Approach to Shape Manipulation,” ACM Trans. Graphics, vol. 28, no. 3,article 33, pp. 1-10, 2009.
[3] J.-P. Vandeborre, V. Couillet, and M. Daoudi, “A Practical Approach for 3D Model Indexing by Combining Local and Global Invariants,” Proc. First Int'l Symp. 3D Data Processing Visualization and Transmission (3DPVT'02), pp. 644-647, 2002.
[4] C.H. Lee, A. Varshney, and D.W. Jacobs, “Mesh Saliency,” Proc. ACM SIGGRAPH, pp. 659-666, 2005.
[5] A.E. Johnson and M. Hebert, “Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes,” IEEE Trans. Pattern Analysis Machine Intelligence, vol. 21, no. 5, pp. 433-449, May 1999.
[6] L. Shapira, A. Shamir, and D. Cohen-Or, “Consistent Mesh Partitioning and Skeletonization Using the Shape Diameter Function,” Visual Computer, vol. 24, no. 4, pp. 249-259, 2008.
[7] J. Sun, M. Ovsjanikov, and L. Guibas, “A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion,” Proc. Eurographics Symp. Geometry Processing (SGP), pp. 1383-1392, 2009.
[8] M. Ovsjanikov, Q. Mérigot, F. Mémoli, and L. Guibas, “One Point Isometric Matching with the Heat Kernel,” Proc. Eurographics Symp. Geometry Processing (SGP), vol. 29, no. 5, pp. 1555-1564, 2010.
[9] T.K. Dey, K. Li, C. Luo, P. Ranjan, I. Safa, and Y. Wang, “Persistent Heat Signature for Pose-Oblivious Matching of Incomplete Models,” Computer Graphics Forum, vol. 29, pp. 1545-1554, 2010.
[10] Y. Lipman and T. Funkhouser, “Möbius Voting for Surface Correspondence,” Proc. ACM SIGGRAPH, pp. 72:1-72:12, 2009.
[11] V.G. Kim, Y. Lipman, X. Chen, and T. Funkhouser, “Mobius Transformations for Global Intrinsic Symmetry Analysis,” Computer Graphics Forum, 2010.
[12] V.G. Kim, Y. Lipman, and T. Funkhouser, “Blended Intrinsic Maps,” Trans. Graphics, vol. 30, article 79, 2011.
[13] N.J. Mitra, L. Guibas, and M. Pauly, “Partial and Approximate Symmetry Detection for 3D Geometry,” ACM Trans. Graphics, vol. 25, no. 3, pp. 560-568, 2006.
[14] K. Xu, H. Zhang, D. Cohen-Or, and Y. Xiong, “Dynamic Harmonic Fields for Surface Processing,” Computers and Graphics, vol. 33, pp. 391-398, 2009.
[15] E. Zhang, K. Mischaikow, and G. Turk, “Feature-Based Surface Parameterization and Texture Mapping,” ACM Trans. Graphics, vol. 24, no. 1, pp. 1-27, 2005.
[16] E. Zhang and G. Turk, “Visibility-Guided Simplification,” Proc. Conf. Visualization, pp. 267-274, 2002.
[17] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson, “Skeleton Based Shape Matching and Retrieval,” Proc. Shape Modeling Int'l, p. 130, 2003.
[18] C.B. Akgul, B. Sankur, Y. Yemez, and F. Schmitt, “3D Model Retrieval Using Probability Density-Based Shape Descriptors,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 6, pp. 1117-1133, June 2009.
[19] J. Tangelder and R. Veltkamp, “A Survey of Content Based 3D Shape Retrieval Methods,” Proc. Shape Modeling Int'l, pp. 145-156, 2004.
[20] M. Ben-Chen and C. Gotsman, “Characterizing Shape using Conformal Factors,” Proc. First Eurographics Conf. 3D Object Retrieval (3DOR), pp. 1-8, 2008.
[21] A. Tevs, A. Berner, M. Wand, I. Ihrke, and H.-P. Seidel, “Intrinsic Shape Matching by Planned Landmark Sampling,” Proc. Eurographics Conf., pp. 543-552, 2011.
[22] T. Gatzke, C. Grimm, M. Garland, and S. Zelinka, “Curvature Maps for Local Shape Comparison,” Proc. Shape Modeling Int'l, pp. 244-256, 2005.
[23] V. Kraevoy, A. Sheffer, and C. Gotsman, “Matchmaker: Constructing Constrained Texture Maps,” Proc. ACM SIGGRAPH, pp. 326-333, 2003.
[24] R. Zayer, C. Rössl, Z. Karni, and H.-P. Seidel, “Harmonic Guidance for Surface Deformation,” Computer Graphics Forum, vol. 24, no. 3, pp. 601-609, 2005.
[25] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J.C. Hart, “Spectral Surface Quadrangulation,” ACM Trans. Graphics, vol. 25, pp. 1057-1066, July 2006.
[26] M. Meyer, M. Desbrun, P. Schröder, and A.H. Barr, “Discrete Differential-Geometry Operators for Triangulated 2-Manifolds,” Visualization and Mathematics III, pp. 35-57, Springer, 2002.
[27] M. Wardetzky, S. Mathur, F. Kälberer, and E. Grinspun, “Discrete Laplace Operators: No Free Lunch,” Proc. Fifth Eurographics Symp. Geometry Processing, pp. 33-37, 2007.
[28] T. Davis, User Guide for CHOLMOD: A Sparse Cholesky Factorization and Modification Package, 2008.
[29] H. Weyl, Symmetry. Princeton Univ. Press, 1983.
[30] M. Leyton, A Generative Theory of Shape. Springer-Verlag, 2001.
[31] J. Podolak, A. Golovinskiy, and S. Rusinkiewicz, “Symmetry-Enhanced Remeshing of Surfaces,” Proc. Fifth Eurographics Symp. Geometry Processing, pp. 235-242, 2007.
[32] N.J. Mitra, L. Guibas, and M. Pauly, “Symmetrization,” ACM Trans. Graphics, vol. 26, no. 3,article 63, pp. 1-8, 2007.
[33] M. Kazhdan, B. Chazelle, D. Dobkin, T. Funkhouser, and S. Rusinkiewicz, “A Reflective Symmetry Descriptor for 3D Models,” Algorithmica, vol. 38, pp. 201-225, 2003.
[34] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, and T. Funkhouser, “A Planar-Reflective Symmetry Transform for 3D Shapes,” ACM Trans. Graphics, vol. 25, pp. 549-559, 2006.
[35] D. Raviv, A.M. Bronstein, M.M. Bronstein, and R. Kimmel, “Symmetries of Non-Rigid Shapes,” Proc. IEEE 11th Int'l Conf. Computer Vision, pp. 1-7, 2007.
[36] K. Xu, H. Zhang, A. Tagliasacchi, L. Liu, G. Li, M. Meng, and Y. Xiong, “Partial Intrinsic Reflectional Symmetry of 3D Shapes,” ACM Trans. Graphics, vol. 28, pp. 138:1-138:10, 2009.
[37] Y. Lipman, X. Chen, I. Daubechies, and T. Funkhouser, “Symmetry Factored Embedding and Distance,” ACM Trans. Graphics, vol. 29, article 103, July 2010.
[38] Y. Zheng and C.-L. Tai, “Mech Decomposition with Cross-Boundary Brushes,” Computer Graphics Forum, vol. 29, no. 2, pp. 527-535, 2010.
[39] F. Mémoli and G. Sapiro, “A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data,” Foundations Computational Math., vol. 5, no. 3, pp. 313-347, 2005.
[40] M.M. Bronstein, A.M. Bronstein, and R. Kimmel, Numerical Geometry of Non-Rigid Shapes. Springer-Verlag, 2008.
[41] H. Zhang, A. Sheffer, D. Cohen-Or, Q. Zhou, O. van Kaick, and A. Tagliasacchi, “Deformation-Drive Shape Correspondence,” Computer Graphics Forum, vol. 27, no. 5, pp. 1431-1439, 2008.
[42] O.K.-C. Au, C.-L. Tai, D. Cohen-Or, Y. Zheng, and H. Fu, “Electors Voting for Fast Automatic Shape Correspondence,” Computer Graphics Forum, vol. 29, no. 2, pp. 645-654, 2010.
[43] O. van Kaick, A. Tagliasacchi, O. Sidi, H. Zhang, D. Cohen-Or, L. Wolf, and G. Hamarneh, “Prior Knowledge for Shape Correspondence,” Computer Graphics Forum, vol. 30, no. 2, pp. 553-562, 2011.
[44] H.W. Kuhn, “The Hungarian Method for the Assignment Problem,” Naval Research Logistics, vol. 52, no. 2, pp. 7-21, 2005.
[45] M. Dorigo and L. Gambardella, “Ant Colony System : A Cooperative Learning Approach to the Traveling Salesman Problem,” IEEE Trans. Evolutionary Computation, vol. 1, no. 1, pp. 53-66, Apr. 1997.
[46] O.K.-C. Au, C.-L. Tai, H.-K. Chu, D. Cohen-Or, and T.-Y. Lee, “Skeleton Extraction by Mesh Contraction,” ACM Trans. Graphics, vol. 27, no. 3,article 44, 2008.
[47] S. Katz and A. Tal, “Hierarchical Mesh Decomposition using Fuzzy Clustering and Cuts,” ACM Trans. Graphics, vol. 22, pp. 954-961, 2003.
[48] J.-M. Lien, J. Keyser, and N.M. Amato, “Simultaneous Shape Decomposition and Skeletonization,” Proc. ACM Solid and Physical Modeling Symp. (SPM '06), pp. 219-228, 2006.
[49] S. Katz, G. Leifman, and A. Tal, “Mesh Segmentation using Feature Point and Core Extraction,” Visual Computer, vol. 21, pp. 649-658, 2005.
[50] A. Golovinskiy and T. Funkhouser, “Randomized Cuts for 3D Mesh Analysis,” ACM Trans. Graphics, article 145, pp. 1-12, 2008.
[51] E. Kalogerakis, A. Hertzmann, and K. Singh, “Learning 3D Mesh Segmentation and Labeling,” ACM Trans. Graphics, vol. 29, no. 3,article 102, 2010.
[52] A. Tagliasacchi, H. Zhang, and D. Cohen-Or, “Curve Skeleton Extraction from Incomplete Point Cloud,” ACM Trans. Graphics, vol. 28, no. 3, pp. 71:1-71:9, 2009.
[53] A. Shamir, “A Survey on Mesh Segmentation Techniques,” Computer Graphics Forum, vol. 27, no. 6, pp. 1539-1556, 2008.
[54] X. Chen, A. Golovinskiy, and T. Funkhouser, “A Benchmark for 3D Mesh Segmentation,” ACM Trans. Graphics, vol. 28, pp. 1-12, 2009.
[55] K. Xu, H. Zhang, W. Jiang, R. Dyer, Z. Cheng, L. Liu, and B. Chen, “Multi-Scale Partial Intrinsic Symmetry Detection,” ACM Trans. Graphics, vol. 31, no. 6,article 181, 2012.
[56] O. van Kaick, H. Zhang, and G. Hamarneh, “Bilateral Maps for Partial Matching,” Computer Graphics Forum, 2013.
40 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool