The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.07 - July (2013 vol.19)
pp: 1143-1157
J. A. Quinn , Dept. of Comput. Sci. Inf., Cardiff Univ., Cardiff, UK
F. C. Langbein , Dept. of Comput. Sci. Inf., Cardiff Univ., Cardiff, UK
Yu-Kun Lai , Dept. of Comput. Sci. Inf., Cardiff Univ., Cardiff, UK
R. R. Martin , Dept. of Comput. Sci. Inf., Cardiff Univ., Cardiff, UK
ABSTRACT
We introduce a novel stratified sampling technique for mesh surfaces that gives the user control over sampling density and anisotropy via a tensor field. Our approach is based on sampling space-filling curves mapped onto mesh segments via parametrizations aligned with the tensor field. After a short preprocessing step, samples can be generated in real time. Along with visual examples, we provide rigorous spectral analysis and differential domain analysis of our sampling. The sample distributions are of high quality: they fulfil the blue noise criterion, so have minimal artifacts due to regularity of sampling patterns, and they accurately represent isotropic and anisotropic densities on the plane and on mesh surfaces. They also have low discrepancy, ensuring that the surface is evenly covered.
INDEX TERMS
Tensile stress, Anisotropic magnetoresistance, Mesh generation, Noise, Rendering (computer graphics), Manifolds, Surface treatment, nonphotorealistic rendering, Sampling, stratified, anisotropy, low discrepancy, blue noise, spectrum analysis
CITATION
J. A. Quinn, F. C. Langbein, Yu-Kun Lai, R. R. Martin, "Generalized Anisotropic Stratified Surface Sampling", IEEE Transactions on Visualization & Computer Graphics, vol.19, no. 7, pp. 1143-1157, July 2013, doi:10.1109/TVCG.2012.305
REFERENCES
[1] R.A. Ulichney, “Dithering with Blue Noise,” Proc. IEEE, vol. 76, no. 1, pp. 56-79, Jan. 1988.
[2] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. SIAM, 1992.
[3] T. Isenberg, P. Neumann, S. Carpendale, M.C. Sousa, and J.A. Jorge, “Non-Photorealistic Rendering in Context: An Observational Study,” Proc. Int'l Symp. Non-Photorealistic Animation and Rendering, pp. 115-126, 2006.
[4] R. Maciejewski, T. Isenberg, W. Andrews, D. Ebert, M. Sousa, and W. Chen, “Measuring Stipple Aesthetics in Hand-Drawn and Computer-Generated Images,” IEEE Computer Graphics and Applications, vol. 28, no. 2, pp. 62-74, Mar./Apr. 2008.
[5] A. Hertzmann, “A Survey of Stroke-Based Rendering,” IEEE Computer Graphics and Applications, vol. 23, no. 4, pp. 70-81, July/Aug. 2003.
[6] A. Lagae and P. Dutré, “A Comparison of Methods for Generating Poisson Disk Distributions,” Computer Graphics Forum, vol. 27, no. 1, pp. 114-129, 2008.
[7] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi Tessellations: Applications and Algorithms,” SIAM Rev., vol. 41, no. 4, pp. 637-676, 1999.
[8] L.-Y. Wei and R. Wang, “Differential Domain Analysis for Non-Uniform Sampling,” Proc. ACM SIGGRAPH, pp. 50:1-50:10, 2011.
[9] D.P. Dobkin, D. Eppstein, and D.P. Mitchell, “Computing the Discrepancy with Applications to Supersampling Patterns,” ACM Trans. Graphics, vol. 15, no. 4, pp. 354-376, 1996.
[10] H. Li, L.-Y. Wei, P.V. Sander, and C.-W. Fu, “Anisotropic Blue Noise Sampling,” ACM Trans. Graphics, vol. 29, pp. 167:1-167:12, 2010.
[11] J.A. Quinn, F.C. Langbein, and R.R. Martin, “Low-Discrepancy Point Sampling of Meshes for Rendering,” Proc. Symp. Point Based Graphics, pp. 19-28, 2007.
[12] M. Steigleder and M. McCool, “Generalized Stratified Sampling using the Hilbert Curve,” J. Graphics Tools, vol. 8, no. 3, pp. 41-47, 2003.
[13] J.A. Quinn, F.C. Langbein, R.R. Martin, and G. Elber, “Density-Controlled Sampling of Parametric Surfaces using Adaptive Space-Filling Curves,” Proc. Geometric Modeling and Processing, pp. 658-678, 2006.
[14] B. Lévy and Y. Liu, “Lp Centroidal Voronoi Tessellation and its Applications,” ACM Trans. Graphics, vol. 29, pp. 119:1-119:11, 2010.
[15] R. Fattal, “Blue-Noise Point Sampling Using Kernel Density Model,” ACM Trans. Graphics, vol. 30, no. 4, pp. 48:1-48:12, 2011.
[16] D. Cline, S. Jeschke, K. White, A. Razdan, and P. Wonka, “Dart Throwing on Surfaces,” Computer Graphics Forum, vol. 28, no. 4, pp. 1217-1226, 2009.
[17] M. Balzer, T. Schlömer, and O. Deussen, “Capacity-Constrained Point Distributions: A Variant of Lloyd's Method,” ACM Trans. Graphics, vol. 28, pp. 86:1-86:8, 2009.
[18] J. Bowers, R. Wang, L.-Y. Wei, and D. Maletz, “Parallel Poisson Disk Sampling with Spectrum Analysis on Surfaces,” ACM Trans. Graphics, vol. 29, pp. 166:1-166:10, 2010.
[19] Y. Miao, R. Pajarola, and J. Feng, “Curvature-Aware Adaptive Re-Sampling for Point-Sampled Geometry,” Computer Aided Design, vol. 41, no. 6, pp. 395-403, 2009.
[20] D. Nehab and P. Shilane, “Stratified Point Sampling of 3D Models,” Proc. Symp. Point-Based Graphics, pp. 49-56, 2004.
[21] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein, “Real-Time Hatching,” Proc. ACM SIGGRAPH, pp. 579-584, 2001.
[22] S.Y. Kim, R. Maciejewski, T. Isenberg, W.M. Andrews, W. Chen, M.C. Sousa, and D.S. Ebert, “Stippling by Example,” Proc. Int'l Symp. Non-Photorealistic Animation and Rendering, pp. 41-50, 2009.
[23] D. Martín, G. Arroyo, M.V. Luzón, and T. Isenberg, “Example-Based Stippling Using a Scale-Dependent Grayscale Process,” Proc. Int'l Symp. Non-Photorealistic Animation and Rendering, pp. 51-61, 2010.
[24] L.-Y. Wei, “Multi-Class Blue Noise Sampling,” ACM Trans. Graphics, vol. 29, pp. 79:1-79:8, 2010.
[25] C.-H. Huang, K.-C. Chang, and C. Wen, “Non-Iterative Stippling of Greyscale Three-Dimensional Polygon Meshed Models,” IET Computer Vision vol. 4, no. 2, pp. 138-148, 2010.
[26] T. Umenhoffer, L. Szécsi, and L. Szirmay-Kalos, “Hatching for Motion Picture Production,” Computer Graphics Forum, vol. 30, no. 2, pp. 533-542, 2011.
[27] J. Quinn, “Low-Discrepancy Point Sampling of 2D Manifolds for Visual Computing,” PhD dissertation, Cardiff Univ., 2009.
[28] L. Feng, I. Hotz, B. Hamann, and K. Joy, “Anisotropic Noise Samples,” IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 2, pp. 342-354, Mar./Apr. 2008.
[29] E. Zhang, K. Mischaikow, and G. Turk, “Vector Field Design on Surfaces,” ACM Trans. Graphics, vol. 25, no. 4, pp. 1294-1326, 2006.
[30] E. Zhang, J. Hays, and G. Turk, “Interactive Tensor Field Design and Visualization on Surfaces,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 1, pp. 94-107, Jan./Feb. 2007.
[31] J. Palacios and E. Zhang, “Rotational Symmetry Field Design on Surfaces,” ACM Trans. Graphics, vol. 26, no. 3, 2007.
[32] Y.-K. Lai, M. Jin, X. Xie, Y. He, J. Palacios, E. Zhang, S.-M. Hu, and X. Gu, “Metric-Driven Rosy Field Design and Remeshing,” IEEE Trans. Visualization and Computer Graphics, vol. 16, no. 1, pp. 95-108, Jan./Feb. 2010.
[33] C.-Y. Yao, M.-T. Chi, T.-Y. Lee, and T. Ju, “Region-Based Line Field Design using Harmonic Functions,” IEEE Trans. Visualization and Computer Graphics, vol. 18, pp. 902-913, June 2012.
[34] M. Meyer, M. Desbrun, P. Schröder, and A.H. Barr, “Discrete Differential Geometry Operators for Triangulated 2-Manifolds,” VisMath III, pp. 35-57, 2002.
[35] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun, “Anisotropic Polygonal Remeshing,” Proc. ACM SIGGRAPH, pp. 485-493, 2003.
[36] T. Delmarcelle and L. Hesselink, “The Topology of Symmetric, Second-Order Tensor Fields,” Proc. Conf. Visualization, pp. 140-147, 1994.
[37] N. Ray, W.C. Li, B. Lévy, A. Sheffer, and P. Alliez, “Periodic Global Parameterization,” ACM Trans. Graphics, vol. 25, no. 4, pp. 1460-1485, 2006.
[38] Y.-K. Lai, S.-M. Hu, R.R. Martin, and P.L. Rosin, “Rapid and Effective Segmentation of 3D Models Using Random Walks,” Computer Aided Geometric Design, vol. 26, no. 6, pp. 665-679, 2009.
[39] X. Tricoche, “Vector and Tensor Topology Simplification, Tracking, and Visualization,” PhD dissertation, Schriftenreihe/Fachbereich Informatik, Universität Kaiserslautern, 2002.
[40] C. Auer and I. Hotz, “Complete Tensor Field Topology on 2D Triangulated Manifolds Embedded in 3D,” Computer Graphics Forum, vol. 30, no. 3, pp. 831-840, 2011.
[41] C. Auer, C. Stripf, A. Kratz, and I. Hotz, “Glyph- and Texture-Based Visualization of Segmented Tensor Fields,” Proc. Int'l Conf. Information Visualization Theory and Applications, pp. 670-677, 2012.
[42] Y.-K. Lai, S.-M. Hu, and R.R. Martin, “Surface Mosaics,” The Visual Computer, vol. 22, nos. 9-11, pp. 604-611, 2006.
[43] P. Guigue and O. Devillers, “Fast and Robust Triangle-Triangle Overlap Test Using Orientation Predicates,” J. Graphics Tools, vol. 8, no. 1, pp. 25-42, 2003.
[44] Y.-K. Lai, S.-M. Hu, and T. Fang, “Robust Principal Curvatures using Feature Adapted Integral Invariants,” Proc. SIAM/ACM Joint Conf. Geometric and Physical Modeling, pp. 325-330, 2009.
[45] T. Schlömer and O. Deussen, “Toward a Standardized Spectral Analysis of Point Sets with Applications in Graphics,” technical report, Univ. of Konstanz, 2010.
27 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool