The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.07 - July (2013 vol.19)
pp: 1078-1094
G. Andrienko , Fraunhofer Intell. Anal. & Inf. Syst. (IAIS), Schloss Birlinghoven, St. Augustin, Germany
N. Andrienko , Fraunhofer Intell. Anal. & Inf. Syst. (IAIS), Schloss Birlinghoven, St. Augustin, Germany
C. Hurter , DGAC/DTI R&D, Univ. of Toulouse, Toulouse, France
S. Rinzivillo , KDDLab, ISTI, Pisa, Italy
S. Wrobel , Fraunhofer Intell. Anal. & Inf. Syst. (IAIS), Schloss Birlinghoven, St. Augustin, Germany
ABSTRACT
Place-oriented analysis of movement data, i.e., recorded tracks of moving objects, includes finding places of interest in which certain types of movement events occur repeatedly and investigating the temporal distribution of event occurrences in these places and, possibly, other characteristics of the places and links between them. For this class of problems, we propose a visual analytics procedure consisting of four major steps: 1) event extraction from trajectories; 2) extraction of relevant places based on event clustering; 3) spatiotemporal aggregation of events or trajectories; 4) analysis of the aggregated data. All steps can be fulfilled in a scalable way with respect to the amount of the data under analysis; therefore, the procedure is not limited by the size of the computer's RAM and can be applied to very large data sets. We demonstrate the use of the procedure by example of two real-world problems requiring analysis at different spatial scales.
INDEX TERMS
Trajectory, Context, Data mining, Visualization, Cities and towns, Time series analysis, Image color analysis, spatiotemporal clustering, Movement, trajectories, spatiotemporal data, spatial events, spatial clustering
CITATION
G. Andrienko, N. Andrienko, C. Hurter, S. Rinzivillo, S. Wrobel, "Scalable Analysis of Movement Data for Extracting and Exploring Significant Places", IEEE Transactions on Visualization & Computer Graphics, vol.19, no. 7, pp. 1078-1094, July 2013, doi:10.1109/TVCG.2012.311
REFERENCES
[1] G. Andrienko and N. Andrienko, “A General Framework for Using Aggregation in Visual Exploration of Movement Data,” The Cartographic J., vol. 47, no. 1, pp.22-40, 2010.
[2] G. Andrienko, N. Andrienko, P. Bak, D. Keim, S. Kisilevich, and S. Wrobel, “A Conceptual Framework and Taxonomy of Techniques for Analyzing Movement,” J. Visual Languages and Computing, vol. 22, no. 3, pp.213-232, 2011.
[3] G. Andrienko, N. Andrienko, C. Hurter, S. Rinzivillo, and S. Wrobel, “From Movement Tracks through Events to Places: Extracting and Characterizing Significant Places from Mobility Data,” Proc. IEEE Conf. Visual Analytics Science and Technology (VAST '11), pp.161-170, 2011.
[4] G. Andrienko, N. Andrienko, and M. Heurich, “An Event-Based Conceptual Model for Context-Aware Movement Analysis,” Int'l J. Geographical Information Science, vol. 25, no. 9, pp.1347-1370, 2011.
[5] G. Andrienko, N. Andrienko, M. Mladenov, M. Mock, and C. Poelitz, “Identifying Place Histories from Activity Traces with an Eye to Parameter Impact,” IEEE Trans. Visualization and Computer Graphics, vol. 18, no.5, pp. 675-688, May 2012.
[6] N. Andrienko and G. Andrienko, “Cumulative Curves for Exploration of Demographic Data: A Case Study of Northwest England,” Computational Statistics, vol. 19, no. 1, pp.9-28, 2004.
[7] N. Andrienko and G. Andrienko, “Exploratory Analysis of Spatial and Temporal Data,” A Systematic Approach, Springer, 2006.
[8] N. Andrienko and G. Andrienko, “Spatial Generalization and Aggregation of Massive Movement Data,” IEEE Trans. Visualization and Computer Graphics, vol. 17, no. 2, pp.205-219, Feb. 2011.
[9] M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS: Ordering Points to Identify the Clustering Structure,” Proc. ACM SIGMOD Int'l Conf. Management of Data, pp. 49-60, 1999.
[10] K. Beard, H. Deese, and N.R. Pettigrew, “A Framework for Visualization and Exploration of Events,” Information Visualization, vol. 7, pp. 133-151, 2008.
[11] P. Buono, A. Aris, C. Plaisant, A. Khella, and B. Shneiderman, “Interactive Pattern Search in Time Series,” Proc. Conf. Visualization and Data Analysis (VDA '05), pp. 175-186, 2005.
[12] F. Calabrese, F. Pereira, G. DiLorenzo, L. Liu, and C. Ratti, “The Geography of Taste: Analyzing Cell-Phone Mobility and Social Events,” Proc. Int'l Conf. Pervasive Computing, pp.22-37, 2010.
[13] T. Crnovrsanin, C. Muelder, C. Correa, and K.-L. Ma, “Proximity-Based Visualization of Movement Trace Data,” Proc. Conf. Visual Analytics Science and Technology (VAST), pp. 11-18, 2009.
[14] S. Dodge, R. Weibel, and E. Forootan, “Revealing the Physics of Movement: Comparing the Similarity of Movement Characteristics of Different Types of Moving Objects,” Computers, Environment and Urban Systems, vol. 33, no. 6, pp.419-434, 2009.
[15] R.A. Enguehard, R. Devillers, and O. Hoeber, “Geovisualization of Fishing Vessel Movement Patterns using Hybrid Fractal/Velocity Signatures,” Proc. Linking Geovisualization with Spatial Analysis and Modeling (GeoViz), http://www.geomatik-hamburg.degeoviz/, 2011.
[16] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise,” Proc. Second Int'l Conf. Knowledge Discovery and Data Mining (KDD), pp. 226-231, 1996.
[17] A. Frank, “Qualitative Spatial Reasoning about Distances and Directions in Geographical Space,” J. Visual Languages and Computing, vol. 3, pp. 343-371, 1992.
[18] A. Fredrikson, C. North, C. Plaisant, and B. Shneiderman, “Temporal, Geographical and Categorical Aggregations Viewed through Coordinated Displays: A Case Study with Highway Incident Data,” Proc. Workshop New Paradigms in information Visualization and Manipulation, pp. 26-34, 1999.
[19] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi, “Trajectory Pattern Mining,” Proc. 13th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data (KDD), pp. 330-339, 2007.
[20] H. Guo, Z. Wang, B. Yu, H. Zhao, and X. Yuan, “TripVista: Triple Perspective Visual Trajectory Analytics and Its Application on Microscopic Traffic Data at a Road Intersection,” Proc. IEEE Pacific Visualization Symp. (PacificVis), pp. 163-170, 2011.
[21] R.H. Güting and M. Schneider, Moving Objects Databases. Morgan Kaufmann, 2005.
[22] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching,” Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '84), pp. 47-57, 1984.
[23] T. Hägerstrand, “What About People in Regional Science?” Papers, Regional Science Assoc., vol. 24, pp. 7-21, 1970.
[24] J.D. Hamilton, Time Series Analysis. Princeton Univ. Press, 1994.
[25] M. Harrower and C.A. Brewer, “ColorBrewer.org: An Online Tool for Selecting Color Schemes for Maps,” The Cartographic J., vol. 40, no. 1, pp. 27-37, 2003.
[26] C. Hurter, B. Tissoires, and S. Conversy, “FromDaDy: Spreading Aircraft Trajectories Across Views to Support Iterative Queries,” IEEE Trans. Visualization and Computer Graphics, vol. 15, no. 6, pp. 1017-1024, Nov. 2009.
[27] P. Kalnis, N. Mamoulis, and S. Bakiras, “On Discovering Moving Clusters in spatioTemporal Data,” Proc. Advances in Spatial and Temporal Databases Conf., pp. 364-381, 2005.
[28] J. Kim, “Events as Property Exemplifications,” Action Theory, M. Brand and D. Walton, eds., pp. 159-177, Reidel, 1976.
[29] M.-J. Kraak, “The Space-Time Cube Revisited from a Geovisualization Perspective,” Proc. 21st Int'l Cartographic Conf., pp.1988-1995, 2003.
[30] P. Laube, S. Imfeld, and R. Weibel, “Discovering Relative Motion Patterns in Groups of Moving Point Objects,” Int'l J. Geographic Information Science, vol. 19, no. 6, pp. 639-668, 2005.
[31] P.A. Longley, M.F. Goodchild, and D.J. Maguire, and D.W. Rhind, Geographical Information Systems. Principles and Technical Issues, second ed., vol. 1, John Wiley & Sons, 1999.
[32] J. Macedo, C. Vangenot, W. Othman, N. Pelekis, E. Frentzos, B. Kuijpers, I. Ntoutsi, S. Spaccapietra, and Y. Theodoridis, “Trajectory Data Models,” Mobility, Data Mining and Privacy - Geographic Knowledge Discovery, F. Giannotti and D. Pedreschi, eds., pp. 123-150, Springer, 2008.
[33] I. Peca, G. Fuchs, K. Vrotsou, N. Andrienko, and G. Andrienko, “Scalable Cluster Analysis of Spatial Events,” Proc. Int'l Workshop Visual Analytics (EuroVA '12), pp. 19-23, 2012.
[34] J.F. Roddick and M. Spiliopoulou, “A Survey of Temporal Knowledge Discovery Paradigms and Methods,” IEEE Trans. Knowledge and Data Eng., vol. 14, no. 4, pp. 750-767, July 2002.
[35] R. Scheepens, N. Willems, H. van de Wetering, and J.J. van Wijk, “Interactive Visualization of Multivariate Trajectory Data with Density Maps,” Proc. IEEE Pacific Visualization Symp. (PacificVis), pp. 147-154, 2011.
[36] J. Wood, J. Dykes, and A. Slingsby, “Visualization of Origins, Destinations and Flows with OD Maps,” The Cartographic J., vol. 47, no. 2, pp.117-129, 2010.
[37] M.F. Worboys, “Event-Oriented Approaches to Geographic Phenomena,” Int'l J. Geographic Information Science, vol. 19, no. 1, pp. 1-28, 2005.
[38] Z. Yan, J. Macedo, C. Parent, and S. Spaccapietra, “Trajectory Ontologies and Queries,” Trans. GIS, vol. 12, no. 1, pp. 75-91, 2008.
15 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool