Issue No.04 - April (2013 vol.19)
pp: 671-680
G. Cirio , INRIA Rennes, Rennes, France
A. Olivier , INRIA Rennes, Rennes, France
M. Marchal , INRIA Rennes, Rennes, France
J. Pettre , INRIA Rennes, Rennes, France
Virtual walking, a fundamental task in Virtual Reality (VR), is greatly influenced by the locomotion interface being used, by the specificities of input and output devices, and by the way the virtual environment is represented. No matter how virtual walking is controlled, the generation of realistic virtual trajectories is absolutely required for some applications, especially those dedicated to the study of walking behaviors in VR, navigation through virtual places for architecture, rehabilitation and training. Previous studies focused on evaluating the realism of locomotion trajectories have mostly considered the result of the locomotion task (efficiency, accuracy) and its subjective perception (presence, cybersickness). Few focused on the locomotion trajectory itself, but in situation of geometrically constrained task. In this paper, we study the realism of unconstrained trajectories produced during virtual walking by addressing the following question: did the user reach his destination by virtually walking along a trajectory he would have followed in similar real conditions? To this end, we propose a comprehensive evaluation framework consisting on a set of trajectographical criteria and a locomotion model to generate reference trajectories. We consider a simple locomotion task where users walk between two oriented points in space. The travel path is analyzed both geometrically and temporally in comparison to simulated reference trajectories. In addition, we demonstrate the framework over a user study which considered an initial set of common and frequent virtual walking conditions, namely different input devices, output display devices, control laws, and visualization modalities. The study provides insight into the relative contributions of each condition to the overall realism of the resulting virtual trajectories.
Trajectory, Legged locomotion, Logic gates, Visualization, Cameras, Virtual environments, Angular velocity,perception-action., Locomotion, evaluation, motor control, vision
G. Cirio, A. Olivier, M. Marchal, J. Pettre, "Kinematic Evaluation of Virtual Walking Trajectories", IEEE Transactions on Visualization & Computer Graphics, vol.19, no. 4, pp. 671-680, April 2013, doi:10.1109/TVCG.2013.34
[1] G. Arechavaleta, J.-P. Laumond, H. Hicheur,, and A. Berthoz., Optimizing principles underlying the shape of trajectories in goal oriented locomotion for humans. In IEEE-RAS Int. Conf. on Humanoid Robots, pages 131–136, 2006.
[2] T. Banton, J. Stefanucci, F. Durgin, A. Fass,, and D. Proffitt., The perception of walking speed in a virtual environment. Presence: Teleoperators and Virtual Environments, 14(4): 394-406, 2005.
[3] A. Berthoz., Le sens du mouvement. Odile Jacob, Paris, 1997.
[4] R. Boulic., Proactive steering toward oriented targets. In Proceedings of Eurographics 2005 Short Presentations, 2005.
[5] D. Brogan and N. Johnson., Realistic human walking paths. In Int. Conf. on Computer Animation and Social Agents, pages 94–101, 2003.
[6] H. Bruggeman, W. Zosh,, and W. H. Warren., Optic flow drives human visuo-locomotor adaptation. Current biology, 17(23): 2035-2040, 2007.
[7] G. Cirio, P. Vangorp, E. Chapoulie, M. Marchal, A. Lecuyer,, and G. Drettakis., Walking in a cube: Novel metaphors for safely navigating large virtual environments in restricted real workspaces. IEEE Trans. on Visualization and Computer Graphics, 18(4): 546-554, 2012.
[8] B. R. Fajen and W. H. Warren., Behavioral dynamics of steering, obstable avoidance, and route selection. Journal of Experimental Psychology: Human Perception and Performance, 29(2): 343-362, 2003.
[9] P. W. Fink, P. S. Foo,, and W. H. Warren., Obstacle avoidance during walking in real and virtual environments. ACM Trans. Appl. Percept., 4(1), 2007.
[10] J. Gibson., The perception of the visual world. Houghton Mifflin, 1950.
[11] R. Grasso, S. Glasauer, Y. Takei,, and A. Berthoz., The predictive brain: anticipatory control of head direction for the steering of locomotion. Neuroreport, 7(6): 1170-1174, 1996.
[12] J. M. Harris and W. Bonas., Optic flow and scene structure do not always contribute to the control of human walking. Vision research, 42(13): 1619-1626, 2002. PMID: 12079790.
[13] S. E. Hassan, J. C. Hicks, H. Lei,, and K. A. Turano., What is the minimum field of view required for efficient navigation? Vision research, 47(16): 2115-2123, 2007. PMID: 17561227.
[14] H. Hicheur, Q.-C. Pham, G. Arechavaleta, J.-P. Laumond,, and A. Berthoz., The formation of trajectories during goal-oriented locomotion in human s. i. a stereotyped behaviour. The European journal of neuroscience, 26(8): 2376-2390, 2007. PMID: 17953625.
[15] M. Hollands, A. Patla,, and J. Vickers., Look where you're going!: gaze behaviour associated with maintaining andchanging the direction of locomotion. Experimental Brain Research, 143(2): 221-230, 2002.
[16] J. H. Hollman, R. H. Brey, R. A. Robb, T. J. Bang,, and K. R. Kaufman., Spatiotemporal gait deviations in a virtual reality environment. Gait & posture, 23(4): 441-444, 2006. PMID: 16095905.
[17] B. K. P. Horn., Robot Vision. The MIT Press, MIT press ed edition, 1986.
[18] H. Iwata and Y. Yoshida., Path reproduction tests using a torus treadmill. Presence: Teleoper. Virtual Environ., 8(6): 587-597, 1999.
[19] R. Klatzky., Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. Spatial Cognition: An Interdisciplinary Approach to Representing and Processing Spatial Knowledge, pages 1-17, 1998.
[20] D. R. Lampton, D. P. McDonald, M. Singer,, and J. P. Bliss., Distance estimation in virtual environments. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 39(20): 1268-1272, 1995.
[21] J. F. Lapointe, P. Savard,, and N. G. Vinson., A comparative study of four input devices for desktop virtual walkthroughs. Comput. Hum. Behav., 27(6): 2186-2191, 2011.
[22] M. Lappe, F. Bremmer,, and A. van den Berg., Perception of self-motion from visual flow. Trends in cognitive sciences, 3: 329-336, 1999.
[23] J. Loomis and J. Knapp., Visual perception of egocentric distance in real and virtual environments. In Virtual and adaptive environments: Applications, implications, and human performance issues, pages 21-46. L. Erlbaum Ass., 2003.
[24] M. Marchal, J. Pettre,, and A. Lecuyer., Joyman: A human-scale joystick for navigating in virtual worlds. In Proc. of the IEEE Symp. on 3D User Interfaces, 3DUI '11, pages 19-26, 2011.
[25] B. J. Mohler, S. H. Creem-Regehr, W. B. Thompson,, and H. H. Blthoff., The effect of viewing a self-avatar on distance judgments in an HMD-Based virtual environment. Presence: Teleoperators and Virtual Environments, 19(3): 230-242, 2010.
[26] K. Mombaur, J.-P. Laumond,, and E. Yoshida., An optimal control model unifying holonomic and nonholonomic walking. In IEEE-RAS Int. Conf. on Humanoid Robots, 2008., pages 646–653, 2008.
[27] A. E. Patla., Understanding the roles of vision in the control of human locomotion. Gait & Posture, 5(1): 54-69, 1997.
[28] A. E. Patla, A. Adkin,, and T. Ballard., Online steering: coordination and control of body center of mass, head and body reorientation. Experimental brain research, 129(4): 629-634, 1999.
[29] Q.-C. Pham,H. Hicheur,G. Arechavaleta,J.-P. Laumond,, and A. Berthoz., The formation of trajectories during goal-oriented locomotion in humans. II. a maximum smoothness model. The European journal of neuroscience, 26(8): 2391-2403, 2007. PMID: 17953626.
[30] P. Prévost,I. Yuri, G. Renato,, and A. Berthoz., Spatial invariance in anticipatory orienting behaviour during human navigation. Neuroscience Letters, 339(3): 243-247, 2003.
[31] S. Razzaque, Z. Kohn,, and M. C. Whitton., Redirected walking. In Proceedings of Eurographics, 2001.
[32] C. Reynolds., Steering behaviors for autonomous characters. In Proceedings of the 1999 Game Developer's Conference, 1999.
[33] S. K. Rushton, J. M. Harris, M. R. Lloyd,, and J. P. Wann., Guidance of locomotion on foot uses perceived target location rather than optic flow. Current Biology, 8(21): 1191-1194, 1998.
[34] M. Slater, M. Usoh,, and A. Steed., Taking steps: the influence of a walking technique on presence in virtual reality. ACM Trans. Comput.-Hum. Interact., 2(3): 201-219, 1995.
[35] J. L. Souman, P. R. Giordano, M. Schwaiger, I. Frissen, T. Thümmel,H. Ulbrich, A. D. Luca,H. H. Bülthoff,, and M. O. Ernst., Cyberwalk: Enabling unconstrained omnidirectional walking through virtual environments. ACM Trans. Appl. Percept., 8(4):25:1-25:22, Dec. 2008.
[36] E. Suma, S. Finkelstein, M. Reid, S. Babu, A. Ulinski,, and L. Hodges., Evaluation of the cognitive effects of travel technique in complex real and virtual environments. IEEE Transactions on Visualization and Computer Graphics, 16(4): 690-702, july-aug. 2010.
[37] E. A. Suma, D. M. Krum,, and M. Bolas., Redirection on mixed reality walking surfaces. In IEEE VR Workshop on Perceptual Illusions in Virt. Env., 2011.
[38] L. Terziman, M. Marchal, F. Multon, B. Arnaldi,, and A. Lécuyer., Comparing virtual trajectories made in slalom using walking-in-place and joystick techniques. In EuroVR / EGVE Joint Virtual Reality Conference, Nottingham, United Kingdom, 2011. Eurographics.
[39] K. A. Turano, D. Yu, L. Hao, and J. C. Hicks., Optic-flow and egocentric-direction strategies in walking: central vs peripheral visual field. Vision research, 45(25-26): 3117–3132, 2005. PMID: 16084556.
[40] J. Warren,W H, , B. A. Kay, W. D. Zosh, A. P. Duchon,, and S. Sahuc., Optic flow is used to control human walking. Nature neuroscience, 4(2): 213-216, 2001. PMID: 11175884.
[41] M. Whitton, J. Cohn, J. Feasel, P. Zimmons, S. Razzaque, S. Poulton, B. McLeod, and J. Brooks,F. P. Comparing VE locomotion interfaces. In IEEE Virtual Reality Proc., 2005.
[42] R. M. Wilkie and J. P. Wann., Eye-movements aid the control of locomotion. Journal of Vision, 3(11), 2003.
[43] P. Willemsen, M. B. Colton, S. H. Creem-Regehr,, and W. B. Thompson., The effects of head-mounted display mechanics on distance judgments in virtual environments. In Proc. of the Symp. on Applied perception in graphics and visualization, 2004.
[44] B. Williams, G. Narasimham, B. Rump, T. P. McNamara, T. H. Carr, J. Rieser,, and B. Bodenheimer., Exploring large virtual environments with an HMD when physical space is limited. In Proc. of the ACM symp. on Applied perception in graphics and visualization, 2007.
[45] C. Zanbaka, B. Lok, S. Babu, A. Ulinski,, and L. Hodges., Comparison of path visualizations and cognitive measures relative to travel technique in a virtual environment. IEEE Transactions on Visualization and Computer Graphics, 11(6): 694–705, nov.-dec. 2005.