The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.04 - April (2013 vol.19)
pp: 567-575
L. Antani , Univ. of North Carolina at Chapel Hill, Chapel Hill, NC, USA
D. Manocha , Univ. of North Carolina at Chapel Hill, Chapel Hill, NC, USA
ABSTRACT
We present an efficient algorithm to compute spatially-varying, direction-dependent artificial reverberation and reflection filters in large dynamic scenes for interactive sound propagation in virtual environments and video games. Our approach performs Monte Carlo integration of local visibility and depth functions to compute directionally-varying reverberation effects. The algorithm also uses a dynamically-generated rectangular aural proxy to efficiently model 2-4 orders of early reflections. These two techniques are combined to generate reflection and reverberation filters which vary with the direction of incidence at the listener. This combination leads to better sound source localization and immersion. The overall algorithm is efficient, easy to implement, and can handle moving sound sources, listeners, and dynamic scenes, with minimal storage overhead. We have integrated our approach with the audio rendering pipeline in Valve's Source game engine, and use it to generate realistic directional sound propagation effects in indoor and outdoor scenes in real-time. We demonstrate, through quantitative comparisons as well as evaluations, that our approach leads to enhanced, immersive multi-modal interaction.
INDEX TERMS
Reverberation, Computational modeling, Geometry, Face, Games, Mathematical model, Absorption,local approximate models., Sound propagation, real-time, directionally-varying reverberation
CITATION
L. Antani, D. Manocha, "Aural Proxies and Directionally-Varying Reverberation for Interactive Sound Propagation in Virtual Environments", IEEE Transactions on Visualization & Computer Graphics, vol.19, no. 4, pp. 567-575, April 2013, doi:10.1109/TVCG.2013.27
REFERENCES
[1] D. Alarcao, D. Santos,, and L. B. Coelho., Virtusound — a real-time auralization system. In Proc. International Congress on Acoustics, 2010.
[2] D. Aliaga, J. Cohen, A. Wilson, E. Baker, H. Zhang, C. Erikson, K. Hoff, T. Hudson, W. Stuerzlinger, R. Bastos, M. Whitton, F. Brooks,, and D. Manocha., Mmr: an interactive massive model rendering system using geometric and image-based acceleration. In Proc. Symposium on Interactive 3D Graphics, pages 199-206, 1999.
[3] J. B. Allen and D. A. Berkley., Image method for efficiently simulating small-room acoustics. J. Acoustical Society of America, 65(4): 943-950, 1979.
[4] L. Antani, A. Chandak, L. Savioja,, and D. Manocha., Interactive sound propagation using compact acoustic transfer operators. ACM Trans. Graphics, 31(1):7:1-7:12, 2012.
[5] R. S. Bailey and B. Brumitt., Method and system for automatically generating world environment reverberation from game geometry. U.S. Patent Application 20100008513, 2010.
[6] J. Blauert., Spatial Hearing: The Psychophysics of Human Sound Localization. MIT Press, 1983.
[7] A. Chandak, C. Lauterbach, M. Taylor, Z. Ren,, and D. Manocha., Ad-frustum: Adaptive frustum tracing for interactive sound propagation. IEEE Trans. Visualization and Computer Graphics, 14(6): 1707-1722, 2008.
[8] X. Decoret, F. Durand, F. Sillion,, and J. Dorsey., Billboard clouds for extreme model simplification. ACM Trans. Graphics, 22(3): 689-696, 2003.
[9] C. F. Eyring., Reverberation time in dead rooms. J. Acoustical Society of America, 1: 217-241, 1930.
[10] T. Funkhouser, J. Carlbom, G. Elko, G. Pingali, M. Sondhi,, and J. West., A beam tracing approach to acoustic modeling for interactive virtual environments. In Proc. SIGGRAPH1998, pages 21-32, 1998.
[11] T. Funkhouser, N. Tsingos,, and J.-M. Jot., Survey of methods for modeling sound propagation in interactive virtual environment systems. Presence, 2004.
[12] N. A. Gumerov and R. Duraiswami., A broadband fast multipole accelerated boundary element method for the three-dimensional helmholtz equation. J. Acoustical Society of America, 125(1): 191-205, 2009.
[13] IASIG. Interactive 3d audio rendering guidelines, level 2.0. http://www.iasig.org/pubs3d12vla.pdf, 1999.
[14] C. Joslin and N. Magnenat-Thalmann., Significant facet retrieval for realtime 3d sound rendering in complex virtual environments. In Proc. ACM Symposium on Virtual Reality Software and Technology, 2003.
[15] J.-M. Jot and A. Chaigne., Digital delay networks for designing artificial reverberators. In AES Convention, 1991.
[16] H. Kuttruff., Room Acoustics. Spon Press, 2000.
[17] S. Laine, S. Siltanen, T. Lokki,, and L. Savioja., Accelerated beam tracing algorithm. Applied Acoustics, 70(1): 172-181, 2009.
[18] H. Landis., Global illumination in production. In SIGGRAPH Course Notes, 2002.
[19] P. Larsson, D. Vastfjall,, and M. Kleiner., Better presence and performance in virtual environments by improved binaural sound rendering. In AES International Conference on Virtual, Synthetic and Entertainment Audio, 2002.
[20] P. Larsson, D. Vastfjall,, and M. Kleiner., On the quality of experience: A multi-modal approach to perceptual ego-motion and sensed presence in virtual environments. In ISCA ITRW on Auditory Quality of Systems, 2003.
[21] C. Lauterbach, A. Chandak,, and D. Manocha., Interactive sound propagation in dynamic scenes using frustum tracing. IEEE Trans. Visualization and Computer Graphics, 13(6): 1672-1679, 2007.
[22] T. Lentz, D. Schroeder, M. Vorlander,, and J. Assenmacher., Virtual reality system with integrated sound field simulation and reproduction. EURASIP J. Applied Signal Processing, 2007.
[23] B. Loos, L. Antani, K. Mitchell, D. Nowrouzezahrai, W. Jarosz,, and P.-P. Sloan., Modular radiance transfer. ACM Trans. Graphics, 30(6), 2011.
[24] P. C. W. Maciel and P. Shirley., Visual navigation of large environments using textured clusters. In Proc. Symp. on Interactive 3D Graphics, 1995.
[25] R. Mehra, N. Raghuvanshi, L. Antani, A. Chandak, S. Curtis,, and D. Manocha., Wave-based sound propagation in large open scenes using an equivalent source formulation. ACM Transactions on Graphics (to appear).
[26] V. Pulkki., Spatial sound generation and perception by amplitude panning techniques. PhD thesis, Helsinki University of Technology, 2001.
[27] N. Raghuvanshi, R. Narain, and M. C. Lin., Efficient and accurate sound propagation using adaptive rectangular decomposition. IEEE Trans. Visualization and Computer Graphics, 15(5): 789-801, 2009.
[28] N. Raghuvanshi, J. Snyder, R. Mehra, M. C. Lin,, and N. Govindaraju., Precomputed wave simulation for real-time sound propagation of dynamic sources in complex scenes. ACM Trans. Graphics, 29(4), 2010.
[29] G. Schaufler., Dynamically generated impostors. In GI Workshop on Modeling, Virtual Worlds, 1995.
[30] P. Shanmugam and O. Arikan., Hardware accelerated ambient occlusion techniques on gpus. In Proc. Symposium on Interactive 3D Graphics, 2007.
[31] S. Siltanen, T. Lokki, S. Kiminki,, and L. Savioja., The room acoustic rendering equation. J. Acoustical Society of America, 122(3): 1624-1635, 2007.
[32] P.-P. Sloan, Stupid spherical harmonics tricks. In Game Developers Conference, 2008.
[33] P.-P. Sloan,J. Kautz,, and J. Snyder., Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In SIGGRAPH, 2002.
[34] R. L. Storms., Auditory-Visual Cross-Modal Perception Phenomena. PhD thesis, Naval Postgraduate School, 1998.
[35] U. P. Svensson, R. J. Fred,, and J. Vanderkooy., An analytic secondary source model of edge diffraction impulse responses. J. Acoustical Society of America, 106(5): 2331-2344, 1999.
[36] A. Taflove and S. C. Hagness., Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, 2005.
[37] M. Taylor, A. Chandak, L. Antani,, and D. Manocha., Resound: Interactive sound rendering for dynamic virtual environments. In Proc. ACM Multimedia, 2009.
[38] M. Taylor, A. Chandak, Q. Mo, C. Lauterbach, C. Schissler,, and D. Manocha., Guided multiview ray tracing for fast auralization. IEEE Trans. Visualization and Computer Graphics, to appear.
[39] L. L. Thompson., A review of finite-element methods for time-harmonic acoustics. J. Acoustical Society of America, 119(3): 1315-1330, 2006.
[40] N. Tsingos., Pre-computing geometry-based reverberation effects for games. In AES Conference on Audio for Games, 2009.
[41] N. Tsingos, T. Funkhouser, A. Ngan,, and J. Carlbom., Modeling acoustics in virtual environments using the uniform theory of diffraction. In Proc. SIGGRAPH2001, pages 545-552, 2001.
[42] M. Vorlander., Simulation of the transient and steady-state sound propagation in rooms using a new combined ray-tracing/image-source algorithm. J. Acoustical Society of America, 86(1): 172-178, 1989.
[43] M. Vorlander and E. Mommertz., Definition and measurement of randomincidence scattering coefficients. Applied Acoustics, 60(2): 187-199, 2000.
[44] S. Zhukov, A. Inoes,, and G. Kronin., An ambient light illumination model. In Rendering Techniques, pages 45-56, 1998.
48 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool