The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2012 vol.18)
pp: 2899-2907
Mike Sips , German Research Center for GeoSciences GFZ
Patrick Kothur , German Research Center for GeoSciences GFZ
Andrea Unger , German Research Center for GeoSciences GFZ
Hans-Christian Hege , Zuse Institute Berlin
Doris Dransch , German Research Center for GeoSciences GFZ
ABSTRACT
We present a Visual Analytics approach that addresses the detection of interesting patterns in numerical time series, specifically from environmental sciences. Crucial for the detection of interesting temporal patterns are the time scale and the starting points one is looking at. Our approach makes no assumption about time scale and starting position of temporal patterns and consists of three main steps: an algorithm to compute statistical values for all possible time scales and starting positions of intervals, visual identification of potentially interesting patterns in a matrix visualization, and interactive exploration of detected patterns. We demonstrate the utility of this approach in two scientific scenarios and explain how it allowed scientists to gain new insight into the dynamics of environmental systems.
INDEX TERMS
Time series analysis, Visual analytics, Data visualization, Meteorology, Entropy, Earth, visual analytics, Time series analysis, multiscale visualization
CITATION
Mike Sips, Patrick Kothur, Andrea Unger, Hans-Christian Hege, Doris Dransch, "A Visual Analytics Approach to Multiscale Exploration of Environmental Time Series", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2899-2907, Dec. 2012, doi:10.1109/TVCG.2012.191
REFERENCES
[1] R. Agrawal and R. Srikant., Mining sequential patterns. In Proceedings of the Eleventh International Conference on Data Engineering ICDM 1995, pages 3-14, 1995.
[2] W. Aigner, S. Miksch, H. Schumann,, and C. Tominski., Visualization of time-oriented data. Springer, London, 2011.
[3] L. Berry and T. Munzner., Binx: Dynamic exploration of time series datasets across aggregation levels. In Proceedings of the IEEE Symposium on Information Visualization, INFOVIS ‘04, pages 5-6. IEEE Computer Society, 2004.
[4] P. Buono, A. Aris, C. Plaisant., A. Khella, and B. Shneiderman., Interactive pattern search in time series. In Proceedings of Conference on Visualization and Data Analysis, VDA 2005, pages 175-186. SPIE, 2005.
[5] S. K. Card,J. D. Mackinlay,, and B. Shneiderman,editors Readings in information visualization: Using vision to think. Morgan Kaufmann, San Francisco and CA, 1999.
[6] C. H. Chen,H. G. Hwu,W. J. Jang,C. H. Kao,Y. J. Tien, S. Tzeng, and H. M. Wu., Matrix visualization and information mining. In Proceedings in Computational Statistics 2004 (Compstat 2004), pages 85-100. Physika Verlag, Heidelberg, 2004.
[7] H. F. Diaz and V. Markgraf, El Niño and the southern oscillation: Multiscale variability and global and regional impacts. Cambridge University Press, Cambridge, 2000.
[8] G. M. Draper, Y. Livnat, and R. F. Riesenfeld., A survey of radial methods for information visualization IEEE Transactions on Visualization and Computer Graphics, 15(5): 759-776, 2009.
[9] M. G. Elfeky,W. G. Aref,, and A. K. Elmagarmid., Periodicity detection in time series databases IEEE Transactions on Knowledge and Data Engineering, 17(7): 875-887, 2005.
[10] J. Han, G. Dong, and Y. Yin., Efficient mining of partial periodic patterns in time series database. In Proceedings of the 15th International Conference on Data Engineering, pages 106-115, 1999.
[11] M. C. Hao, U. Dayal, D. A. Keirn,, and T. Schreck., Multi-resolution techniques for visual exploration of large time-series data. In Euro Vis07: Joint Eurographics - IEEE VGTC Symposium on Visualization, pages 27-34. Eurographics Association, 2007.
[12] M. C. Hao, M. Marwah, H. Janetzko., U. Dayal, D. A. Keirn, D. Patnaik, N. Ramakrishnan,, and R. K. Sharma., Visual exploration of frequent patterns in multivariate time series Information Visualization, 11(1): 71-83, 2012.
[13] H. Hochheiser and B. Shneiderman, Dynamic query tools for time series data sets: timebox widgets for interactive exploration Information Visualization. 3(1): 1-18. 2004.
[14] O. Hoeber, G. Wilson, S. Harding., R. Enguehard, and R. Devillers., Exploring geo-temporal differences using gtdiff. In Proceedings of the 2011 IEEE Pacific Visualization Symposium, PACIFICVIS ‘11, pages 139-146. IEEE Computer Society, 2011.
[15] W. Javed and N. Elmqvist., Stack zooming for multi-focus interaction in time-series data visualization. In IEEE Pacific Visualization Symposium PacificVis 2010, pages 33-40. IEEE Computer Society, 2010.
[16] D. F. Jerding and J. T. Stasko., The information mural: A technique for displaying and navigating large information spaces IEEE Transactions on Visualization and Computer Graphics, 4(3): 257-271, 1998.
[17] D. A. Keirn., Designing pixel-oriented visualization techniques: Theory and applications IEEE Transactions on Visualization and Computer Graphics, 6(1): 59-78, 2000.
[18] E. Keogh, S. Lonardi, and B. Chiu., Finding surprising patterns in a time series database in linear time and space. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, KDD ‘02, pages 550-556. ACM, 2002.
[19] R. Kincaid and H. Lam., Line graph explorer: scalable display of line graphs using focus+context. In Proceedings of the working conference on Advanced visual interfaces, AVI ‘06, pages 404-411, New York, NY, USA, 2006. ACM.
[20] O. D. Lampe and H. Hauser., Curve Density Estimates. In EuroVis11: Eurographics/IEEE Symposium on Visualization, pages 633-642. Eurographics Association, 2011.
[21] J. Lin, E. Keogh, and S. Lonardi, Visualizing and discovering non-trivial patterns in large time series databases Information Visualization, 4(2): 61-82, July 2005.
[22] P. McLachlan, T. Munzner, E. Koutsofios,, and S. North., Liverac: interactive visual exploration of system management time-series data. In Proceedings of the twenty-sixth annual SIGCHI conference on Human factors in computing systems, CHI ‘08, pages 1483-1492, New York, NY, USA, 2008. ACM.
[23] E. C. Members., One-to-one coupling of glacial climate variability in greenland and antarctica Nature, 444(7116): 195-198, 2006.
[24] A. Mueen,E. J. Keogh, Q. Zhu, S. Cash,, and M. B. Westover., Exact discovery of time series motifs. In Proceedings of the SIAM International Conference on Data Mining, SDM 2009, pages 473-484, 2009.
[25] D. Scott., Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley series in probability and mathematical statistics: Applied probability and statistics. Wiley, 1992.
[26] B. Shneiderman., The eyes have it: A task by data type taxonomy for information visualizations. In Proceedings of the 1996 IEEE Symposium on Visual Languages VL ‘96, pages 336-343. IEEE Computer Society Press, 1996.
[27] C. Tominski and H. Schumann., Enhanced interactive spiral display. In Proceedings of the Annual SIGRAD Conference, Special Theme: Inter-activity, pages 53-56. Linköping University Electronic Press, 2008.
[28] A. Tuchman and M. W. Berry., Matrix visualization in the design of numerical algorithms INFORMS Journal on Computing, 2(1): 84-92, 1990.
[29] M. Weber, M. Alexa, and W. Müller., Visualizing time-series on spirals. In K. Andrews, editor, Proceedings of the IEEE Symposium on Information Visualization 2001, pages 7-13. IEEE Computer Society, 2001.
[30] L. Wilkinson, and M. Friendly, The history of the cluster heat map The American Statistician, 63(2): 179-184, 2009.
[31] H.-M. Wu, S. Tzeng, and C. houh, Chen. Matrix Visualization in Hand-book of Data Visualization, pages 681-708. Springer Handbooks of Computational Statistics. Springer, 2008.
[32] J. Yang, W. Wang, and P. S. Yu., Mining asynchronous periodic patterns in time series data. IEEE Transactions on Knowledge and Data Engineering, 15(3): 613-628, 2003.
[33] I. Zaliapin, A. Gabrielov, and V. Keilis-Borok., Multiscale trend analysis. Fractals, 12(3): 275-292, 2004.
[34] X. Zhang,D. E. Shasha, Y. Song, and J. T L. Wang., Fast elastic peak detection for mass spectrometry data mining IEEE Transactions on Knowledge and Data Engineering, 24(4): 634-648, 2012.
[35] J. Zhao, F. Chevalier, and R. Balakrishnan., Kronominer: using multi-foci navigation for the visual exploration of time-series data. In Proceedings of the 2011 annual conference on Human factors in computing systems, CHI’ 11, pages 1737-1746. ACM, 2011.
20 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool