This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Visualizing Student Histories Using Clustering and Composition
Dec. 2012 (vol. 18 no. 12)
pp. 2809-2818
David Trimm, The University of Maryland, Baltimore County
Penny Rheingans, The University of Maryland, Baltimore County
Marie desJardins, The University of Maryland, Baltimore County
While intuitive time-series visualizations exist for common datasets, student course history data is difficult to represent using traditional visualization techniques due its concurrent nature. A visual composition process is developed and applied to reveal trends across various groupings. By working closely with educators, analytic strategies and techniques are developed to leverage the visualization composition to reveal unknown trends in the data. Furthermore, clustering algorithms are developed to group common course-grade histories for further analysis. Lastly, variations of the composition process are implemented to reveal subtle differences in the underlying data. These analytic tools and techniques enabled educators to confirm expected trends and to discover new ones.
Index Terms:
Trajectory,Image color analysis,History,Market research,Data visualization,visualization composition,Clustering,aggregate visualization,student performance analysis
Citation:
David Trimm, Penny Rheingans, Marie desJardins, "Visualizing Student Histories Using Clustering and Composition," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 12, pp. 2809-2818, Dec. 2012, doi:10.1109/TVCG.2012.288
Usage of this product signifies your acceptance of the Terms of Use.