The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2012 vol.18)
pp: 2769-2778
Tobias Isenberg , DIGITEO/CNRS/INRIA
ABSTRACT
We report on results of a series of user studies on the perception of four visual variables that are commonly used in the literature to depict uncertainty. To the best of our knowledge, we provide the first formal evaluation of the use of these variables to facilitate an easier reading of uncertainty in visualizations that rely on line graphical primitives. In addition to blur, dashing and grayscale, we investigate the use of ‘sketchiness’ as a visual variable because it conveys visual impreciseness that may be associated with data quality. Inspired by work in non-photorealistic rendering and by the features of hand-drawn lines, we generate line trajectories that resemble hand-drawn strokes of various levels of proficiency—ranging from child to adult strokes—where the amount of perturbations in the line corresponds to the level of uncertainty in the data. Our results show that sketchiness is a viable alternative for the visualization of uncertainty in lines and is as intuitive as blur; although people subjectively prefer dashing style over blur, grayscale and sketchiness. We discuss advantages and limitations of each technique and conclude with design considerations on how to deploy these visual variables to effectively depict various levels of uncertainty for line marks.
INDEX TERMS
Uncertainty, Shape analysis, Data visualization, Image color analysis, Gray-scale, Rendering (computer graphics), perception, Uncertainty visualization, qualitative evaluation, quantitative evaluation
CITATION
Nadia Boukhelifa, Anastasia Bezerianos, Tobias Isenberg, Jean-Daniel Fekete, "Evaluating Sketchiness as a Visual Variable for the Depiction of Qualitative Uncertainty", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2769-2778, Dec. 2012, doi:10.1109/TVCG.2012.220
REFERENCES
[1] J. C J. H. Aerts,K.C. Clarke,, and A. D. Keuper., Testing Popular Visualization Techniques for Representing Model Uncertainty Cartography and Geographic Information Science, 30(3): 249-261, July 2003. doi > 10.1559/152304003100011180
[2] R. S., Allendes Osorio and K. W. Brodlie., Contouring with Uncertainty. In Theory and Practice of Computer Graphics, pp. 59-65. Eurographics Association, Goslar, Germany, 2008. doi > 10.2312/LocalChapterEvents/TPCG/TPCG08/059–065
[3] Z. AlMeraj, B. Wyvill, T. Isenberg,A. A. Gooch,, and R. Guy., Automatically Mimicking Unique Hand-Drawn Pencil Lines. Computers & Graphics, 33(4): 496-508, Aug. 2009. doi > 10.1016/j.cag.2009.04.004
[4] J. Bertin., Semiology of Graphics: Diagrams, Networks, Maps. ESRI Press, Redlands, California, 2010.
[5] A. M. Bisantz, T. Kesevadas, P. Scott., D. Lee, S. Basapur., P. Bhide, P. Bhide,, and P. Bhide., Holistic Battlespace Visualization: Advanced Concepts in Information Visualization and Cognitive Studies. Technical report, UB Engineering, University of Buffalo, USA, June 2002.
[6] D. Borland, and Russell. Rainbow Color Map (Still) Considered Harm-ful. IEEE Computer Graphics and Applications, 27(2): 14-17, Mar./Apr. 2007. doi > 10.1109/MCG.2007.323435
[7] R. P. Botchen, D. Weiskopf, and T. Ertl., Texture-Based Visualization of Uncertainty in Flow Fields. In Proc. IEEE Visualization, pp. 647-654. IEEE, Los Alamitos, 2005. doi > 10.1109/VISUAL.2005.1532853
[8] N. Boukhelifa and D. J. Duke., Uncertainty Visualization - Why Might it Fail? In CHI Extended Abstracts, pp. 4051-4056. ACM, New York, 2009. doi > 10.1145/1520340.1520616
[9] R. Brecheisen, B. Platel, B. ter Haar Romeny,, and A. Vilanova., Illustrative Uncertainty Visualization of DTI Fiber Pathways. The Visual Computer, 2012. To appear. doi > 10.1007/s00371–012-0733–9
[10] R. Brown., Animated Visual Vibrations as an Uncertainty Visualisation Technique. In Proc. GRAPHITE, pp. 84-89. ACM, New York, 2004. doi > 10.1145/988834.988849
[11] A. Cedilnik and P. Rheingans., Procedural Annotation of Uncertainty Information. In Proc. IEEE Visualization, pp. 77-84. IEEE Computer Society, Los Alamitos, 2000. doi > 10.1109/VISUAL.2000.885679
[12] W. S. Cleveland and R. McGill., Graphical Perception and Graphical Methods for Analyzing Scientific Data Science, 229(4716): 828-833, Aug. 1985. doi > 10.1126/science.229.4716.828
[13] C. D. Correa, Y.-H. Chan, and K.-L. Ma., A Framework for Uncertainty-Aware Visual Analytics. In Proc. VAST, pp. 51-58. IEEE Computer Society, Los Alamitos, 2009. doi > 10.1109/VAST.2009.5332611
[14] C. Curtis., Loose and Sketchy Animation. In SIGGRAPH Technical Sketches, p. 317. ACM, New York, 1998. doi > 10.1145/281388.281913
[15] S. Diepenbrock, J.-S. Prani, F. Lindemann., H.-W. Bothe, and T. Ropin-ski., Interactive Visualization Techniques for Neurosurgery Planning. In Eurographics Short Papers/Dirk Bartz Prize for Visual Computing in Medicine, pp. 13-16. Eurographics Association, Goslar, Germany, 2011.
[16] A. Finkelstein and D. H. Salesin., Multiresolution Curves. In Proc. SIGGRAPH, pp. 261-268. ACM, New York, 1994. doi> > 10.1145/192161. 192223
[17] T. Flash and N. Hogans, The Coordination of Arm Movements: An Exper-imentally Confirmed Mathematical Model The Journal of Neuroscience, 5(7): 1688-1703, July 1985.
[18] L. E. Gerharz and E. J. Pebesma., Usability of Interactive and Non-Interactive Visualisation of Uncertain Geospatial Information. In Proc. Geoinformatik, pp. 223-230. ifgiPrints, Münster, Germany, 2009.
[19] N. D. Gershon., Visualization of Fuzzy Data Using Generalized Animation. In Proc. IEEE Visualization, pp. 268-273. IEEE, Los Alamitos, 1992. doi> 10.1109/VISUAL.1992.235199
[20] E. B, Goldstein Sensation and Perception. Brooks/Cole Publishing, Pacific Grove, USA, 5th edition, 1999.
[21] B. Gooch and A. A, Gooch Non-Photorealistic Rendering. A K Peters, Ltd., Natick, 2001.
[22] H. Griethe and H. Schumann., The Visualization of Uncertain Data: Methods and Problems. In Proc. SimVis, pp. 143-156. SCS Publishing House e.V., Erlangen, Germany, 2006.
[23] J. R. Hamerly and C. A. Dvorak., Detection and Discrimination of Blur in Edges and Lines Journal of the Optical Society of America, 71(4): 448-452, Apr. 1981. doi> 10.1364/JOSA.71.000448
[24] J. Heer and M. Bostock., Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. In Proc. CHI, pp. 203-212. ACM, New York, 2010. doi> 10.1145/1753326.1753357
[25] T. Hengl and D. J. J. W., A. Brown., Pixel and Colour Mixture: GIS Techniques for Visualisation of Fuzziness and Uncertainty of Natural Resource Inventories. In Proc. Accuracy, pp. 300-308. Delft University Press, Delft, the Netherlands, 2002.
[26] T. Hengl and N. Toomanian., Maps Are Not What They Seem: Representing Uncertainty in Soil-Property Maps. In Proc. Accuracy, pp. 805-813. Instituto Geográfico Portugues, Lisboa, Portugal, 2006.
[27] R. Kosara, S. Miksch, H. Hauser., J. Schrammel, V. Giller,, and M. Tsche-ligi., Useful Properties of Semantic Depth of Field for Better F+C Visualization. In Proc. VisSym, pp. 205-210. Eurographics Association, Goslar, Germany, 2002.
[28] M. Leitner and B. P. Buttenfield., Guidelines for the Display of Attribute Certainty Cartography and Geographic Information Science, 27(1): 3-14, Jan. 2000. doi> 10.15591152304000783548037
[29] H. Li,C.-W. Fu, Y. Li, and A. J. Hanson., Visualizing Large-Scale Uncertainty in Astrophysical Data IEEE Transactions on Visualization and Computer Graphics, 13(6): 1640-1647, Nov./Dec. 2007. doi> 10.11091 TVCG.2007.70620
[30] M. Luboschik, A. Radloff, and H. Schumann., Using NPR-Rendering Techniques for the Visualization of Uncertainty. In Posters of IEEE Info-Vis. IEEE Computer Society, Los Alamitos, 2010.
[31] A. M. MacEachren., Visualizing Uncertain Information Cartographic Perspectives, 13(Fall): 12-19, 1992.
[32] A. M. MacEachren, A. Robinson, S. Gardner., R. Murray, M. Gahegan,, and E. Hetzler., Visualizing Geospatial Information Uncertainty: What We Know and What We Need to Know Cartography and Geographic Information Science, 32(3): 139-160, July 2005. doi> 10.15591 1523040054738936
[33] M. Matthews, L. Rehak, A.-L. Lapinski,, and S. McFadden., Improving the Maritime Surface Picture with a Visualization Aid to Provide Rapid Situation Awareness of Information Uncertainty. In Proc. IEEE TIC-STH, pp. 533-538. IEEE, Los Alamitos, 2009. doi> 10.1109/TIC-STH.2009. 5444441
[34] M. Nienhaus, F. Kirsch, and J. Döllner., Sketchy Illustrations for Presenting the Design of Interactive CSG. In Proc. IV, pp. 772-777. IEEE Computer Society, Los Alamitos, 2006. doi> 10.1109/IV.2006.97
[35] A. Pang., Visualizing Uncertainty in Geo-spatial Data. In Proc. Workshop on the Intersections between Geospatial Information and Information Technology, 2001.
[36] A. T. Pang,C. M. Wittenbrink,, and S. K. Lodha., Approaches to Uncertainty Visualization The Visual Computer, 13(8): 370-390, Nov. 1996. doi> 10.1007/s003710050111
[37] J. J. Pfeiffer, Jr., Using Brightness and Saturation to Visualize Belief and Uncertainty. In Proc. Diagrams, pp. 279-289. Springer-Verlag, Berlin, 2002. doi> 10.1007/3–540-46037–3_27
[38] K. Potter, A. Gooch, B. Gooch., P. Willemsen, J. Kniss., R. Riesenfeld, and P. Shirley., Resolution Independent NPR-Style 3D Line Textures. Computer Graphics Forum, 28(1): 52-62, Mar. 2009. doi> 10.1111/j.1467–8659.2008.01297.x
[39] P. J. Rhodes,R. S. Laramee,R. D. Bergeron,, and T. M. Sparr., Uncertainty Visualization Methods in Isosurface Rendering. In EG Short Papers, pp. 83-88. Eurographics Association, Goslar, Germany, 2003.
[40] J. Sanyal, S. Zhang, G. Bhattacharya., P. Amburn, and R. J. Moorhead., A User Study to Compare Four Uncertainty Visualization Methods for 1D and 2D Datasets IEEE Transactions on Visualization and Computer Graphics, 15(6): 1209-1218, Nov./Dec. 2009. doi> 10.1109/TVCG.2009. 114
[41] S. Schlechtweg, B. Schönwälder, L. Schumann,, and T. Strothotte., Surfaces to Lines: Rendering Rich Line Drawings. In Proc. WSCG, 2, pp. 354-361, 1998.
[42] J. Schumann, T. Strothotte, A. Raab,, and S. Laser., Assessing the Effect of Non-photorealistic Rendered Images in CAD. In Proc. CHI, pp. 35-42. ACM, New York, 1996. doi> 10.1145/238386.238398
[43] S. S. Stevens and E. H. Galanter., Ratio Scales and Category Scales for a Dozen Perceptual Continua Journal of Experimental Psychology, 54(6): 377-411, Dec. 1957. doi> 10.1037/h0043680
[44] S. S. Stevens, Psychophysics. Transaction Publishers, New Brunswick, USA, 2nd edition, 1975.
[45] T. Strothotte, M. Masuch, and T. Isenberg., Visualizing Knowledge about Virtual Reconstructions of Ancient Architecture. In Proc. CGI, pp. 36-43. IEEE, Los Alamitos, 1999. doi> 10.1109/CGI.1999.777901
[46] T. Strothotte, M. Puhle, M. Masuch., B. Freudenberg, S. Kreiker,, and B. Ludowici., Visualizing Uncertainty in Virtual Reconstructions. In Proc. EVA Europe, p. 16. EVA Conferences International/GFaI, Berlin, 1999.
[47] T. Strothotte, B. Preim, A. Raab., J. Schumann, and D. R. Forsey., How to Render Frames and Influence People Computer Graphics Forum, 13(3): 455-466, Aug. 1994. doi>10.111111467–8659.1330455
[48] T. Strothotte and S. Schlechtweg., Non-Photorealistic Computer Graphics. Modeling, Animation, and Rendering. Morgan Kaufmann Publishers, San Francisco, 2002.
[49] J. Thomson, E. Hetzler, A. MacEachren., M. Gahegan, and M. Pavel., A Typology for Visualizing Uncertainty. In Proc. Visualization and Data Analysis, pp. 146-157. SPIE, 2005. doi> > 10.1117112.587254
[50] R. Watt and M. Morgan, The Recognition and Representation of Edge Blur: Evidence for Spatial Primitives in Human Vision Vision Research, 23(12): 1465-1477, 1983. doi > 10.1016/0042–6989(83)90158-X
[51] M. Wagner., The Geometries of Visual Space. Lawrence Erlbaum Associates, Mahwah, NJ, USA, 2006.
[52] G. A. Winkenbach and D. H. Salesin., Computer-Generated Pen-and-Ink Illustration. In Proc. SIGGRAPH, pp. 91-100. ACM, New York, 1994. doi> 10.1145/192161.192184
[53] W. Willett, J. Heer, and M. Agrawala, Scented Widgets: Improving Navigation Cues with Embedded Visualizations IEEE Transactions on Visualization and Computer Graphics, 13(6): 1129-1136, Nov. 2007. doi> 10.1109/TVCG.2007.70589
[54] J. Wood, P. Isenberg, T. Isenberg., J. Dykes, N. Boukhelifa,, and A. Slingsby., Sketchy Rendering for Information Visualization. IEEE Transactions on Visualization and Computer Graphics, 18(12), Nov./Dec. 2012. In this issue.
[55] Z. Xie, S. Huang, M. O. Ward,, and E. A. Rundensteiner., Exploratory Visualization of Multivariate Data with Variable Quality. In Proc. VAST, pp. 183-190. IEEE, Los Alamitos, 2006. doi>10.1109/VAST.2006.261424
[56] B. Zehner, N. Watanabe, and O. Kolditz, Visualization of Gridded Scalar Data with Uncertainty in Geosciences Computers & Geosciences, 36(10): 1268-1275, Oct. 2010. doi> 10.1016/j.cageo.2010.02.010
[57] T. Zuk and S. Carpendale., Theoretical Analysis of Uncertainty Visualizations. In Visualization and Data Analysis, Proc. SPIE-IS&T Electronic Imaging, pp. 606007/1-14. SPIE, 2006. doi> 10.1117/12.643631
14 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool