The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2012 vol.18)
pp: 2679-2688
Y. Tanahashi , ViDi Res. Group, Univ. of California, Davis, CA, USA
Kwan-Liu Ma , ViDi Res. Group, Univ. of California, Davis, CA, USA
Storyline visualization is a technique used to depict the temporal dynamics of social interactions. This visualization technique was first introduced as a hand-drawn illustration in XKCD's “Movie Narrative Charts” [21]. If properly constructed, the visualization can convey both global trends and local interactions in the data. However, previous methods for automating storyline visualizations are overly simple, failing to achieve some of the essential principles practiced by professional illustrators. This paper presents a set of design considerations for generating aesthetically pleasing and legible storyline visualizations. Our layout algorithm is based on evolutionary computation, allowing us to effectively incorporate multiple objective functions. We show that the resulting visualizations have significantly improved aesthetics and legibility compared to existing techniques.
optimisation, data visualisation, evolutionary computation, humanities, interactive systems, evolutionary computation, design considerations, storyline visualization optimization, social interactions, hand-drawn illustration, XKCD, movie narrative charts, global trends, local interactions, storyline visualization automation, Layout, Data visualization, Genomics, Design methodology, White spaces, Motion pictures, design study, Layout algorithm, timeline visualization, storyline visualization
Y. Tanahashi, Kwan-Liu Ma, "Design Considerations for Optimizing Storyline Visualizations", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2679-2688, Dec. 2012, doi:10.1109/TVCG.2012.212
[1] M. Agrawala, W. Li, and F. Berthouzoz, Design principles for visual communication Commun. ACM, 54(4): 60-69, Apr. 2011.
[2] G. D. Battista, P. Eades, R. Tamassia,, and I. G., Tollis Graph Drawing: Algorithmsfor the Visualization of Graphs. Prentice Hall, 1998.
[3] U. Brandes and S. Corman., Visual unrolling of network evolution and the analysis of dynamic discourse. In Information Visualization, 2002. INFOVIS 2002. IEEE Symposium on, pages 145-151, 2002.
[4] L. Byron and M. Wattenberg, Stacked graphs - geometry & aesthetics IEEE Transactions on Visualization and Computer Graphics, 14: 12451252, November 2008.
[5] L. Carroll., Alice's Adventures in Wonderland. Macmillan Publishers, 1869.
[6] W. Cui, S. Liu, L. Tan., C. Shi, Y. Song., Z. Gao, H. Qu,, and X. Tong., Textfiow: Towards better understanding of evolving topics in text. Visualization and Computer Graphics, IEEE Transactions on, 17(12): 2412-2421, dec. 2011.
[7] W. Cui, H. Zhou, H. Qu,P. C. Wong,, and X. Li., Geometry-based edge clustering for graph visualization. Visualization and Computer Graphics, IEEE Transactions on, 14(6): 1277-1284, nov.-dec. 2008.
[8] J. Díaz, J. Petit, and M. Serna, A survey of graph layout problems ACM Comput. Surv., 34: 313-356, September 2002.
[9] G. Ellis and A. Dix, A taxonomy of clutter reduction for information visualisation Visualization and Computer Graphics, IEEE Transactions on, 13(6): 1216-1223, nov.-dec. 2007.
[10] C. Friedrich and M. Houle., Graph drawing in motion ii. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing, 2265 of Lecture Notes in Computer Science, pages 122-125. Springer Berlin / Heidelberg, 2002.
[11] K., Garland., Mr beck's underground map. Capital Transport Publishing, 1994.
[12] D. E, Goldberg Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1 st edition, 1989.
[13] M. Graham and J. Kennedy., Using curves to enhance parallel coordinate visualisations. In Information Visualization, 2003. IV 2003. Proceedings. Seventh International Conference on, pages 10-16, july 2003.
[14] S. Havre, E. Hetzler, P. Whitney,, and L. Nowell., Themeriver: visualizing thematic changes in large document collections. Visualization and Computer Graphics, IEEE Transactions on, 8(1): 9-20, jan/mar 2002.
[15] J. Heer and S. K. Card., Doitrees revisited: scalable, space-constrained visualization of hierarchical data. In Proceedings of the working conference on Advanced visual interfaces, AVI ‘04, pages 421-424, New York, NY, USA, 2004. ACM.
[16] M. Itoh, M. Toyoda, and M. Kitsuregawa., An interactive visualization framework for time-series of web graphs in a 3d environment. In Information Visualisation (IV), 2010 14th International Conference, pages 54-60, july 2010.
[17] N. W. Kim,S. K. Card,, and J. Heer., Tracing genealogical data with timenets. In Proceedings of the International Conference on Advanced Visual Interfaces, AVI ‘10, pages 241-248, New York, NY, USA, 2010. ACM.
[18] G. Kumar and M. Garland, Visual exploration of complex time-varying graphs Visualization and Computer Graphics, IEEE Transactions on, 12(5): 805-812, sept.-oct. 2006.
[19] Z. Maoz., Dyadic MID Dataset (version 2.0)., 2005.
[20] A. A. Martínez,J. J. D. Cosín,, and C. P. García., Software project visualization using task oriented metaphors Journal of Software Engineering and Applications, 3: 1015-1026, 2010.
[21] R. Munroe., Xkcd #657: Movie narrative charts. http://xkcd.com657, December 2009.
[22] K. Nesbitt., Getting to more abstract places using the metro map metaphor. In Information Visualisation, 2004. IV 2004. Proceedings. Eighth International Conference on, pages 488-493, july 2004.
[23] M. Nollenburg and A. Wolff, Drawing and labeling high-quality metro maps by mixed-integer programming Visualization and Computer Graphics. IEEE Transactions on, 17(5): 626-641, may 2011.
[24] M. Ogawa. evolines.
[25] M. Ogawa and K.-L. Ma., Software evolution storylines. In Proceedings of the 5th international symposium on Software visualization, SOFTVIS ‘10, pages 35-42, New York, NY, USA, 2010. ACM.
[26] V. Ogievetsky., Plotweaver xkcd/657 creation tool. FP-OgievetskyVadim, March 2009.
[27] K. Reda, C. Tantipathananandh, A. Johnson., J. Leigh, and T. Berger-Wolf., Visualizing the evolution of community structures in dynamic social networks. Computer Graphics Forum, 30(3): 1061-1070, 2011.
[28] G. Robertson, R. Fernandez, D. Fisher., B. Lee, and J. Stasko, Effectiveness of animation in trend visualization IEEE Transactions on Visualization and Computer Graphics, 14(6): 1325-1332, Nov. 2008.
[29] P. Saffrey and H. Purchase., The “mental map” versus “static aesthetic” compromise in dynamic graphs: a user study. In Proceedings of the ninth conference on Australasian user interface-76,AUIC ‘08, pages 85-93, Darlinghurst, Australia, Australia, 2008. Australian Computer Society, Inc.
[30] D. Selassie, B. Heller, and J. Heer, Divided edge bundling for directional network data Visualization and Computer Graphics, IEEE Transactions on, 17(12): 2354-2363, dec. 2011.
[31] J. Stott, P. Rodgers, R. Burkhard., M. Meier, and M. Smis., Automatic layout of project plans using a metro map metaphor. In Information Visualisation, 2005. Proceedings. Ninth International Conference on, pages 203-206, july 2005.
[32] R. Tamassia,G. Di Battista,, and C. Batini., Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man Cybern., 18(1): 61-79, Jan. 1988.
[33] Y. Tanahashi., Movie interaction dataset. storyline_visualizations , 2012.
[34] A. Unwin, M. Theus, H. Hofmann., R. Moustafa, and E. Wegman., Multivariate Continuous Data Parallel Coordinates, pages 143-155. Statistics and Computing. Springer New York, 2006.
[35] C. Ware., Information Visualization: Perception for Design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.
[36] N. Wong, S. Carpendale, and S. Greenberg., Edgelens: an interactive method for managing edge congestion in graphs. In Information Visualization, 2003. INFOVIS 2003. IEEE Symposium on, pages 51-58, oct. 2003.
26 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool