The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2012 vol.18)
pp: 2659-2668
K. Wongsuphasawat , Univ. of Maryland, College Park, MD, USA
ABSTRACT
Event sequence data is common in many domains, ranging from electronic medical records (EMRs) to sports events. Moreover, such sequences often result in measurable outcomes (e.g., life or death, win or loss). Collections of event sequences can be aggregated together to form event progression pathways. These pathways can then be connected with outcomes to model how alternative chains of events may lead to different results. This paper describes the Outflow visualization technique, designed to (1) aggregate multiple event sequences, (2) display the aggregate pathways through different event states with timing and cardinality, (3) summarize the pathways' corresponding outcomes, and (4) allow users to explore external factors that correlate with specific pathway state transitions. Results from a user study with twelve participants show that users were able to learn how to use Outflow easily with limited training and perform a range of tasks both accurately and rapidly.
INDEX TERMS
data visualisation, pathway state transition, temporal event sequence, event sequence data, electronic medical record, EMR, sports event, event progression pathway, outflow visualization technique, aggregate pathway, event state, cardinality, Data visualization, Information analysis, Sequential analysis, Layout, Image color analysis, state transition, Outflow, information visualization, temporal event sequences, state diagram
CITATION
K. Wongsuphasawat, D. Gotz, "Exploring Flow, Factors, and Outcomes of Temporal Event Sequences with the Outflow Visualization", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2659-2668, Dec. 2012, doi:10.1109/TVCG.2012.225
REFERENCES
[1] W. Aigner, S. Miksch, B. Thurnher,, and S. Biffl., PlanningLines: Novel Glyphs for Representing Temporal Uncertainties and Their Evaluation. In Proceedings of the International Conference on Information Visualization (IV), pages 457-463. IEEE, 2005.
[2] P. André,M. L. Wilson, A. Russell, D. A. Smith, A. Owens, and M. Schraefel, Continuum: designing timelines for hierarchies, relation-ships and scale Proceedings of the Annual ACM Symposium on User Interface Software and Technology (UIST), page 101, 2007.
[3] R. Bade, S. Schlechtweg, and S. Miksch., Connecting time-oriented data and information to a coherent interactive visualization. In Proceedings of the Annual SIGCHI Conference on Human Factors in Computing Systems (CHI), pages 105-112. ACM, 2004.
[4] J. Blaas,C. P. Botha, E. Grundy, M. W. Jones,R. S. Laramee,, and F. H. Post., Smooth graphs for visual exploration of higher-order state transitions. IEEE Transactions on Visualization and Computer Graphics, 15(6): 969-76, 2009.
[5] T. Booth., Sequential Machines and Automata Theory. John Wiley and Sons, New York, NY, USA, 1967.
[6] M. Burch, F. Beck, and S. Diehl., Timeline trees: visualizing sequences of transactions in information hierarchies. In Proceedings of the Working Conference on Advanced Visual Interfaces (AVI), pages 75-82, Napoli, Italy, 2008. ACM.
[7] S. B. Cousins and M. G. Kahn., The visual display of temporal information Artificial Intelligence in Medicine, 3(6): 341-357, 1991.
[8] G. Di Battista, P. Eades, R. Tamassia,, and I. G. Tollis., Algorithms for drawing graphs: an annotated bibliography. Computational Geometry, 4(5): 235-282, Oct. 1994.
[9] J. Fails, A. Karlson, L. Shahamat,, and B. Shneiderman., A Visual Interface for Multivariate Temporal Data: Finding Patterns of Events across Multiple Histories. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (VAST), 0, pages 167-174. IEEE, Oct. 2006.
[10] M. Friendly, Visions and re-visions of Charles Joseph Minard Journal of Educational and Behavioral Statistics, 27(1): 31-51, 2002.
[11] B. L. Harrison, R. Owen, and R. M. Baecker., Timelines: an interactive system for the collection and visualization of temporal data. In Proceedings of Graphics Interface (GI), pages 141-141. Citeseer, 1994.
[12] G. M. Karam., Visualization using timelines. In Proceedings of the ACM SIGSOFT International Symposium on Software Testing and Analysis, pages 125-137. ACM, 1994.
[13] R. Kosara, F. Bendix, and H. Hauser, Parallel sets: interactive exploration and visual analysis of categorical data IEEE Transactions on Visualization and Computer Graphics, 12(4): 558-68, 2006.
[14] P. A. McKee,W. P. Castelli,P. M. McNamara,, and W. B. Kannel., The natural history of congestive heart failure: the Framingham study The New Englandjournal of medicine, 285(26): 1441-6, Dec. 1971.
[15] J. J. McMurray and M. A. Pfeffer., Heart failure Lancet, 365(9474): 1877-1889, 2005.
[16] P. Mui., Introducing Flow Visualization: visualizing visitor flow. 2011.
[17] C. A. Petri., Communication with automata. Technical report, DTIC Research Report, 1966.
[18] D. Phan, A. Paepcke, and T. Winograd., Progressive multiples for communication-minded visualization. In Proceedings of Graphics Interface (GI), page 225, New York, New York, USA, 2007. ACM.
[19] D. Phan, L. Xiao, R. Yeh., P. Hanrahan, and T. Winograd., Flow map lay-out. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pages 219-224. IEEE, 2005.
[20] C. Plaisant, R. Mushlin, A. Snyder., J. Li, D. Heller,, and B. Shneiderman., LifeLines: using visualization to enhance navigation and analysis of patient records. In Proceedings of the AMIA Annual Symposium, pages 76-80. American Medical Informatics Association, 1998.
[21] A. J. Pretorius and J. J. van Wijk., Visual analysis of multivariate state transition graphs IEEE Transactions on Visualization and Computer Graphics, 12(5): 685-92, 2006.
[22] A. J. Pretorius and J. J. van Wijk., Visual Inspection of Multivariate Graphs Computer Graphics Forum, 27(3): 967-974, May 2008.
[23] P. Riehmann, M. Hanfler, and B. Froehlich., Interactive Sankey diagrams. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pages 233-240. IEEE, 2005.
[24] G. Salton and C. Buckley, Term-weighting approaches in automatic text retrieval Information Processing & Management, 24(5): 513-523, 1988.
[25] K. Sugiyama, S. Tagawa, and M. Toda, Methods for Visual Understanding of Hierarchical System Structures IEEE Transactions on Systems, Man, and Cybernetics, 11(2): 109-125, 1981.
[26] S. van den Elzen and J. J. van Wijk., Baobab View: Interactive construction and analysis of decision trees. In 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), pages 151-160. Ieee, Oct. 2011.
[27] F. van Ham,H. van De Wetering,, and J. J. van Wijk., Interactive visualization of state transition systems. IEEE Transactions on Visualization and Computer Graphics, 8(4): 319-329, Oct. 2002.
[28] K. Vrotsou, K. Ellegard, and M. Cooper., Everyday Life Discoveries: Mining and Visualizing Activity Patterns in Social Science Diary Data. In Proceedings of the International Conference on Information Visualization (IV), pages 130-138. IEEE, July 2007.
[29] K. Vrotsou, J. Johansson, and M. Cooper, ActiviTree: interactive visual exploration of sequences in event-based data using graph similarity IEEE Transactions on Visualization and Computer Graphics, 15(6): 945-52, 2009.
[30] T. D. Wang, C. Plaisant, A. J. Quinn, R. Stanchak, S. Murphy,, and B. Shneiderman., Aligning temporal data by sentinel events: discovering patterns in electronic health records. In Proceedings of the Annual SIGCHI Conference on Human Factors in Computing Systems (CHI), pages 457-466. ACM, 2008.
[31] M. Wattenberg., Visual exploration of multivariate graphs. In Proceedings of the Annual SIGCHI Conference on Human Factors in Computing Systems (CHI), page 811. ACM, 2006.
[32] K. Wongsuphasawat and D. Gotz., Outflow: Visualizing patient flow by symptoms and outcome. In IEEE Vis Week Workshop on Visual Analytics in Healthcare, pages 25-28, 2011.
[33] K. Wongsuphasawat,J. A. Guerra Gómez, C. Plaisant, T. D. Wang,M. Taieb-Maimon,, and B. Shneiderman., LifeFlow: Visualizing an Overview of Event Sequences. In Proceedings of the Annual SIGCHI Conference on Human Factors in Computing Systems (CHI), pages 1747-1756. ACM, 2011.
[34] K. Wongsuphasawat, C. Plaisant, M. Taieb-Maimon,, and B. Shneiderman., Querying Event Sequences by Exact Match or Similarity Search: Design and Empirical Evaluation. Interacting with computers, 24(2): 55-68, Mar. 2012.
[35] K. Wongsuphasawat and B. Shneiderman., Finding comparable temporal categorical records: A similarity measure with an interactive visualization. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (VAST), pages 27-34. IEEE, Oct. 2009.
17 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool