The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2012 vol.18)
pp: 2546-2555
Arlind Nocaj , University of Konstanz
Ulrik Brandes , University of Konstanz
ABSTRACT
We propose a method to highlight query hits in hierarchically clustered collections of interrelated items such as digital libraries or knowledge bases. The method is based on the idea that organizing search results similarly to their arrangement on a fixed reference map facilitates orientation and assessment by preserving a user’s mental map. Here, the reference map is built from an MDS layout of the items in a Voronoi treemap representing their hierarchical clustering, and we use techniques from dynamic graph layout to align query results with the map. The approach is illustrated on an archive of newspaper articles.
INDEX TERMS
Search methods, Query processing, Edge detection, Tree data structures, edge bundling, Search results, mental map, voronoi treemaps, dynamic graph layout, multidimensional scaling
CITATION
Arlind Nocaj, Ulrik Brandes, "Organizing Search Results with a Reference Map", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2546-2555, Dec. 2012, doi:10.1109/TVCG.2012.250
REFERENCES
[1] K. Andrews, W. Kienreich, V. Sabol., J. Becker, G. Droschl., F. Kappe, M. Granitzer., P. Auer, and K. Tochtermann., The infosky visual explorer: Exploiting hierarchical structure and document similarities. In Proc. Information Visualization, pages 166-181, 2002.
[2] K. Andrews, J. Wolte, and M. Pichler, Information pyramids tm: A new approach to visualising large hierarchies IEEE Visualization ‘97, Late Breaking Hot Topics Proc. :49-52, 1997.
[3] Apache Software Foundation. Apache Lucene. http://lucene.apache.org,visited on November, 2011.
[4] D. Archambault,H. C. Purchase,, and B. Pinaud., Animation, small multiples, and the effect of mental map preservation in dynamic graphs. IEEE Transactions on Visualization and Computer Graphics, 17: 539-552, 2011.
[5] M. Balzer and O. Deussen., Voronoi treemaps. In Proceedings of IEEE Symposium of Information Visualization (Info Vis ‘05), pages 49-56. IEEE Computer Society Press, 2005.
[6] I. Borg and P. Groenen., Modern Multidimensional Scaling: Theory and Applications. Springer, 1997.
[7] U. Brandes and M. Mader., A quantitative comparison of stress-minimization approaches for offline dynamic graph drawing. In Proceedings of the 19th International Symposium on Graph Drawing (GD 2011), 7034 of Lecture Notes in Computer Science, pages 99-110. Springer-Verlag, 2012.
[8] U. Brandes and C. Pich., Eigensolver methods for progressive multidimensional scaling of large data. In M. Kaufmann, and D. Wagner, editors, Proceedings of the 14th International Symposium on Graph Drawing (GD‘06), 4372 of Lecture Notes in Computer Science, pages 42-53. Springer-Verlag, 2007.
[9] U., Brandes and C. Pich., An experimental study on distance-based graph drawing. In Proceedings of the 16th International Symposium on Graph Drawing (GD‘08), 5417 of Lecture Notes in Computer Science, pages 218-229. Springer-Verlag, 2009.
[10] M. Bruls, K. Huizing, and J. van Wijk., Squarified treemaps. In Proceedings of the Joint Eurographics and IEEE TCVG Symposium on Visualization, pages 33-42. Press, 1999.
[11] N. Cao, J. Sun, Y.-R. Lin, D. Gotz, S. Liu,, and H. Qu., FacetAtlas: Multi-faceted visualization for rich text corpora. IEEE Transactions on Visualization and Computer Graphics, 16(6): 1172-1181, 2010.
[12] J. Caumanns., A fast and simple stemming algorithm for german words, 1999. http://edocs.fu-berlin.de/docs/receiveFUDOCS_docurnent_000000001631, visited on November, 2011.
[13] E. Clarkson, J. Day, and J. Foley., The development of an educational digitallibrary for human-centered computing. Technical Report GIT-GVU-05–33, Georgia Tech's Institutional Repository, 2005.
[14] E. Clarkson, K. Desai, and J. Foley, Resultmaps: Visualization for search interfaces IEEE Transactions on Visualization and Computer Graphics, 15: 1057-1064, 2009.
[15] T. Cox and M. Cox., Multidimensional Scaling. Number Bd. 1 in Monographs on statistics and applied probability. Chapman & Hall/CRC, 2001.
[16] M. Damashek, Gauging similarity with n-grams: Language-independent categorization of text Science, 267(5199): 843-849, 1995.
[17] S. Deerwester,S. T. Dumais,G. W. Furnas,T. K. Landauer,, and R. Harsh-man., Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6): 391-407, 1990.
[18] T. Dwyer and K. Marriott., Constrained stress majorization using diago-nally scaled gradient projection. In Proceedings of the 15th International Symposium on Graph Drawing (GD‘07), 4875 of Lecture Notes in Computer Science, pages 219-230. Springer-Verlag, 2008.
[19] S. Fortune, A sweepline algorithm for voronoi diagrams Algorithmica, 2: 153-174, 1987.
[20] E. R. Gansner, Y. Koren, and S. C. North., Graph drawing by stress ma-jorization. In Proceedings of the 13th International Symposium on Graph Drawing (GD‘05), 3383 of Lecture Notes in Computer Science, pages 239-250. Springer-Verlag, 2005.
[21] O. Gospodnetic and E. Hatcher., Lucene in Action. Manning, 2005.
[22] B. Gretarsson,J. O’Donovan, S. Bostandjiev, T. Höllerer., A. Asuncion, D. Newman,, and P. Smyth., Topicnets: Visual analysis of large text corpora with topic modeling. ACM Trans. Intell. Syst. Technol., 3(2): 23:1-23:26, 2012.
[23] H. S, Heaps Information Retrieval: Computational and Theoretical As-pects. Academic Press, 1978.
[24] D. Holten, Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data IEEE Transactions on Visualization and Computer Graphics, 12: 741-748, 2006.
[25] T. Honkela, S. Kaski, K. Lagus,, and T. Kohonen., Websom - self-organizing maps of document collections. In Neurocomputing, pages 101-117, 1997.
[26] M. Iron, R. Neustedt, and O. Ranen., Method of graphically presenting network information, Mar. 202001. US Patent App. 09/812, 968.
[27] T. Kohonen, The self-organizing map Proceedings of the IEEE, 78(9): 1464-1480, 1990.
[28] J. Kruskal, Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis Psychometrika, 29: 1-27, 1964.
[29] J. Lamping, R. Rao, and P. Pirolli., A focus+context technique based on hyperbolic geometry for visualizing large hierarchies. In Proceedings of the SIGCHI conference on Humanfactors in computing systems, CHI ‘95, pages 401-408, 1995.
[30] T. K. Landauer and S. T. Dumais., A solution to plato's problem: The latent semantic analysis theory of the acquisition, induction, and representation of knowledge Psychological Review, 104: 211-240, 1997.
[31] W. Li, P. Eades, and N. Nikolov., Using spring algorithms to remove node overlapping. In Proceedings of the 2005 Asia-Pacific Symposium on Information visualisation - 45, APVis ‘05, pages 131-140. Australian Computer Society, Inc., 2005.
[32] S. P. Lloyd., Least squares quantization in pcm. Technical report, Bell Laboritories Memo, 1957.
[33] K. A. Lyons., Cluster busting in anchored graph drawing. In Proceedings of the 1992 conference of the Centre for Advanced Studies on Collaborative research - Volume 2, CAS CON ‘92, pages 327-337. IBM Press, 1992.
[34] K. A. Lyons, H. Meijer, and D. Rappaport., Properties of the voronoi diagram cluster buster. In Proceedings of the 1993 conference of the Centre for Advanced Studies on Collaborative research: distributed computing -Volume 2, CAS CON ‘93, pages 1148-1163. IBM Press, 1993.
[35] C. Manning, P. Raghavan, and H. Schütze., Introduction to Information Retrieval. Cambridge University Press, 2008.
[36] J. McConnell., Computer Graphics: Theory into Practice. Jones and Bartlett Publishers, 2006.
[37] K. Misue, P. Eades, W. Lai,, and K. Sugiyama., Layout adjustment and the mental map. Journal of Visual Languages and Computing, 6(2): 183-210, 1995.
[38] T. Munzner, H3: Laying out large directed graphs in 3d hyperbolic space IEEE Symposium on Information Visualization, 0: 2, 1997.
[39] A. Nocaj and U. Brandes, Computing voronoi treemaps: Faster, simpler, and resolution-independent Computer Graphics Forum, 31(3): 855-864, 2012.
[40] E. Rennison., Galaxy of news: An approach to visualizing and understanding expansive news landscapes. In Proceedings of the 7th annual ACM symposium on User interface software and technology, UIST ‘94, pages 3-12, 1994.
[41] G. Salton., Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley Longman Publishing Co., Inc., 1989.
[42] G. Salton,E. A. Fox,, and H. Wu., Extended boolean information retrieval. Commun. ACM, 26(11): 1022-1036, 1983.
[43] B. Shneiderman, Tree visualization with tree-maps: 2-d space-filling approach ACM Transactions on Graphics, 11: 92-99, 1992.
[44] B. Shneiderman., Treemaps for space-constrained visualization of hierarchies, June 2009. http://www.cs.urnd.edu/hcil/treernap-history , visited on November, 2011.
[45] R. Tamassia and S. S. Bridgeman., A user study in similarity measures for graph drawing Journal of Graph Algorithms and Applications, 6(3): 225-254, 2002.
[46] J. Thomas, P. Cowley, O. Kuchar., L. Nowell, J. Thomson,, and P. C. Wong., Discovering knowledge through visual analysis. Journal of Universal Computer Science, 7(6): 517-529, 2001.
17 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool