The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2012 vol.18)
pp: 2526-2535
Yingcai Wu , University of California, Davis
Guo-Xun Yuan , University of California, Davis
Kwan-Liu Ma , University of California, Davis
ABSTRACT
Uncertainty can arise in any stage of a visual analytics process, especially in data-intensive applications with a sequence of data transformations. Additionally, throughout the process of multidimensional, multivariate data analysis, uncertainty due to data transformation and integration may split, merge, increase, or decrease. This dynamic characteristic along with other features of uncertainty pose a great challenge to effective uncertainty-aware visualization. This paper presents a new framework for modeling uncertainty and characterizing the evolution of the uncertainty information through analytical processes. Based on the framework, we have designed a visual metaphor called uncertainty flow to visually and intuitively summarize how uncertainty information propagates over the whole analysis pipeline. Our system allows analysts to interact with and analyze the uncertainty information at different levels of detail. Three experiments were conducted to demonstrate the effectiveness and intuitiveness of our design.
INDEX TERMS
Uncertainty, Data visualization, Ellipsoids, Visual analytics, Covariance matrix, uncertainty fusion, Uncertainty visualization, uncertainty quantification, uncertainty propagation, error ellipsoids
CITATION
Yingcai Wu, Guo-Xun Yuan, Kwan-Liu Ma, "Visualizing Flow of Uncertainty through Analytical Processes", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2526-2535, Dec. 2012, doi:10.1109/TVCG.2012.285
REFERENCES
[1] A. Afifi, S. May, and V. A, Clark Computer-aided Multivariate Analysis. CRC Press, 2004.
[2] N. Au, R. Law, and D. Buhalis., The impact of culture on ecomplaints: Evidence from the chinese consumers in hospitality organization. In U. Gretzel, R. Law, and M. Fuchs, editors, , Information and Communication Technologies in Tourism 2010, pages 285-296. Springer-Verlag Wien, 2010.
[3] E. Bertini and D. Lalanne, Investigating and reflecting on the integration of automatic data analysis and visualization in knowledge discovery ACM SIGKDD Explorations Newsletter, 11(2): 9-18, 2010.
[4] A. M. Bisantz,S. S. Marsiglio,, and J. Munch., Displaying uncertainty: Investigating the effects of display format and specificity Human Factors, 47(4): 777-796, 2005.
[5] S. Brandt., Data Analysis: Statistical and Computational Methods for Scientists and Engineers. Springer Verlag, 1999.
[6] K. Brodlie, A. Poon, H. Wright., L. Brankin, G. Banecki,, and A. Gay., GRASPARC: a problem solving environment integrating computation and visualization. In Proceedings of the 4th conference on Visualization, pages 102-109, 1993.
[7] S. K. Card,J. D. Mackinlay,and B. Shneiderman,editors Readings in information visualization: using vision to think. Morgan Kaufmann Publishers, 1st edition, 1999.
[8] J. Chen, A. Choudhary, B. De Supinski, M. DeVries, E. Hawkes., S. Klasky, W. Liao., K. Ma, J. Mellor-Crummey, N. Podhorszki, et al. Terascale direct numerical simulations of turbulent combustion using s3d. Computational Science & Discovery, 2: 015001, 2009.
[9] C. D. Correa, Y.-H. Chan, and K.-L. Ma., A framework for uncertainty-aware visual analytics. In Proceedings of IEEE Symposium on Visual Analytics Science and Technology, pages 51-58, 2009.
[10] J. E. Davis., Combining error ellipses. Technical report, Massachusetts Institute of Technology, 2007.
[11] S. Deitrick and R. Edsall., The influence of uncertainty visualization on decision making: An empirical evaluation. In Progress in Spatial Data Handling, pages 719-738. Springer Berlin Heidelberg, 2006.
[12] D. Feng, L. Kwock, Y. Lee,, and R. Taylor., Matching visual saliency to confidence in plots of uncertain data. IEEE Transactions on Visualization and Computer Graphics, 16(6): 980-989, 2010.
[13] G. S, Fishman Monte Carlo Concepts, Algorithms, And Applications. Springer-Verlag, 1996.
[14] M. Friendly, Corrgrams: Exploratory displays for correlation matrices The American Statistician, 56(11): 316-324, 2002.
[15] G. Furnas., Generalized fisheye views. In Proceedings of the SIGCHI conference on Human Factors in computing systems, pages 16-23, 1986.
[16] J. Heer, J. Mackinlay, C. Stolte,, and M. Agrawala., Graphical histo-ries for visualization: Supporting analysis, communication, and evaluation. IEEE Transactions on Visualization and Computer Graphics, 14(6): 1189-1196, 2009.
[17] J. Heltona and F. Davis, Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems Reliability Engineering System Safety, 81(1): 23-69, 2003.
[18] M. Hu and B. Liu., Mining and summarizing customer reviews. In ACM SIGKDD international conference on Knowledge discovery and data mining, pages 168-177, 2004.
[19] G. Hunter and M. Goodchild, Managing uncertainty in spatial databases: Putting theory into practice Journal of Urban and Regional Information Systems Association, 5(2): 55-62, 1993.
[20] T. J. Jankun-Kelly, K.-L. Ma, and M. Gertz., A model and framework for visualization exploration IEEE Transactions on Visualization and Computer Graphics, 13(2): 357-369, 2007.
[21] C. R. Johnson and A. R. Sanderson., A next step: Visualizing errors and uncertainty IEEE Computer Graphics and Applications, 23(5): 610, 2003.
[22] Joint Committee for Guides in Metrology (JCGM). Guide to the Expression of Uncertainty in Measurement (GUM). International Organization for Standardization (ISO), 1998.
[23] D. A. Keirn, F. Mansmann, J. Schneidewind., J. Thomas, and H. Ziegler., Visual analytics: Scope and challenges. In S. J. Simoff,M. H. Bohlen,and A. Mazeika, editors, , Visual Data Mining: Theory, Techniques and Toolsfor Visual Analytics. Springer, 1st edition, 2008.
[24] M. Kreuseler, T. Nocke, and H. Schumann., A history mechanism for visual data mining. In Proceedings of the IEEE Symposium on Information Visualization, pages 49-56, 2004.
[25] W. K. Liu, T. Belytschko, and A. Mani., Random field finite elements International Journalfor Numerical Methods in Engineering, 23(10): 18311845, 1986.
[26] H. Niederreiter., Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial Mathematics, 1992.
[27] C. Olston and J. D. Mackinlay., Visualizing data with bounded uncertainty. In Proceedings of IEEE Information Visualization, pages 37-40, 2002.
[28] A. T. Pang,C. M. Wittenbrink,, and S. K. Lodha., Approaches to uncer-tainty visualization The Visual Computer, 13(8): 370-390, 1996.
[29] K. Potter, J. Kniss, R. Riesenfeld,, and C. Johnson., Visualizing summary statistics and uncertainty. Computer Graphics Forum, 29(3): 823-832, 2010.
[30] C. J. Roy and W. L. Oberkampf., A comprehensive framework for verification, validation and uncertainty quantification in scientific computing Computer Methods in Applied Mechanics and Engineering, 200(25–28): 2131-2144, 2011.
[31] R. Y, Rubinstein Simulation and the Monte Carlo Method. Wiley-Interscience, 2nd edition, 2007.
[32] J. Sanyal, S. Zhang, G. Bhattacharya., P. Amburn, and R. Moorhead, A user study to compare four uncertainty visualization methods for 1d and 2d datasets IEEE Transactions on Visualization and Computer Graphics, 15(6): 1209-1218, 2009.
[33] B. Shneiderman., The eyes have it: A task by data type taxonomy for information visualizations. In IEEE Symposium on Visual Languages, pages 336-343, 1996.
[34] M. Skeels, B. Lee, G. Smith,, and G. Robertson., Revealing uncertainty for information visualizations. Information Visualization, 9(1): 70-81, 2010.
[35] A. Slingsby, J. Dykes, and J. Wood, Exploring uncertainty in geodemographics with interactive graphics IEEE Transactions on Visualization and Computer Graphics, 17(12): 2545-2554, 2011.
[36] H. Smith and N. Richard., Applied Regression Analysis. Wiley-Interscience, 2003.
[37] B. N. Taylor and C. E., Kuyatt Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results. The National Institute of Standards and Technology (NIST), 1994.
[38] J. Thomson, B. Hetzlera, A. MacEachrenb., M. Gaheganb, and M. Pavel., A typology for visualizing uncertainty. In Proceedings of Visualization and Data Analysis, pages 146-157, 2005.
[39] C. Turkay, P. Filzmoser, and H. Hauser, Brushing dimensions: A dual visual analysis model for high-dimensional datasets IEEE Transactions on Visualization and Computer Graphics, 17(12): 2591-2599, 2011.
[40] Y. B S. J. van Wijk., Supporting exploration awareness in information visualization IEEE Computer Graphics and Applications, 29(5): 34-43, 2009.
[41] J. Wei, H. Yu, R. Grout., J. Chen, and K. Ma, Visual analysis of particle behaviors to understand combustion simulations Computer Graphics and Applications, IEEE, 32(1): 22-33, 2012.
[42] Y. Wu, F. Wei, S. Liu., N. Au, W. Cui., H. Zhou, and H. Qu, Opinionseer: Interactive visualization of hotel customer feedback IEEE Transactions on Visualization and Computer Graphics, 16(6): 1109-1118, 2010.
[43] D. Xiu., Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, 2010.
[44] F. Yamazaki, M. Shinozuka, and G. Dasgupta, Neumann expansion for stochastic finite-element analysis Journal of Engineering Mechanics, 114(8): 1335-1354, 1988.
[45] T. Zuk and S. Carpendale., Theoretical analysis of uncertainty visualizations. In Proceedings of Visualization and Data Analysis, pages 66-79, 2006.
[46] T. Zuk and S. Carpendale., Visualization of uncertainty and reasoning. In Proceedings of the international symposium on Smart Graphics, pages 164-177, 2007.
33 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool