The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2012 vol.18)
pp: 2516-2525
Anastasia Bezerianos , Univ Paris-Sud
ABSTRACT
We present the results of two user studies on the perception of visual variables on tiled high-resolution wall-sized displays. We contribute an understanding of, and indicators predicting how, large variations in viewing distances and viewing angles affect the accurate perception of angles, areas, and lengths. Our work, thus, helps visualization researchers with design considerations on how to create effective visualizations for these spaces. The first study showed that perception accuracy was impacted most when viewers were close to the wall but differently for each variable (Angle, Area, Length). Our second study examined the effect of perception when participants could move freely compared to when they had a static viewpoint. We found that a far but static viewpoint was as accurate but less time consuming than one that included free motion. Based on our findings, we recommend encouraging viewers to stand further back from the display when conducting perception estimation tasks. If tasks need to be conducted close to the wall display, important information should be placed directly in front of the viewer or above, and viewers should be provided with an estimation of the distortion effects predicted by our work—or encouraged to physically navigate the wall in specific ways to reduce judgement error.
INDEX TERMS
Information analysis, Data visualization, Navigation, Visual analytics, wall-displays, Information visualization, perception
CITATION
Anastasia Bezerianos, Petra Isenberg, "Perception of Visual Variables on Tiled Wall-Sized Displays for Information Visualization Applications", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2516-2525, Dec. 2012, doi:10.1109/TVCG.2012.251
REFERENCES
[1] D. J. Aks and J. T. Enns., Visual Search for Size is Influenced by a Background Texture Gradient Journal of Experimental Psychology: Human Perception and Performance, 22(6): 1467-1481, Dec. 1996. doi> 10.1037/0096-1523.22.6.1467
[2] F. Alallah, D. Jin, and P. Irani., Oa-Gaphs: Orientation Agnostic Graphs for Improving the Legibility of Charts on Horizontal Displays. In Proc. ITS, pp. 211-220. ACM, New York, 2010. doi> 10.1145/1936652.1936692
[3] C. Andrews, A. Endert, B. Yost,, and C. North., Information Visualization on Large, High-resolution Displays: Issues, Challenges, and Opportuni-ties. Information Visualization, 10(4): 341-355, Oct. 2011. doi> 10.1177/1473871611415997
[4] R. Ball and C. North., Analysis of User Behavior on High-Resolution Tiled Displays. In Proc. INTERACT, 3585 of LNCS, pp. 350-363. Springer Verlag, Berlin 1 Heidelberg, 2005. doi> 10.1007/11555261-30
[5] R. Ball and C. North., The Effects of Peripheral Vision and Physical Navigation on Large Scale Visualization. In Proc. Graphics Interface (GI), pp. 9-16. CIPS, Toronto, 2008.
[6] R. Ball, C. North, and D. A. Bowman., Move to Improve: Promoting Physical Navigation to Increase User Performance with Large Displays. In Proc. CHI, pp. 191-200. ACM, New York, 2007. doi> 10.114511240624.1240656
[7] M. Beaudouin-Lafon., Lessons Learned from the WILD Room, a Mul-tisurface Interactive Environment. In Proc. IHM, pp. 18:1-18:8. ACM, New York, 2011. doi> 10.1145/2044354.2044376
[8] A. Bezerianos., Using Alternative Views for Layout, Comparison and Context Switching Tasks in Wall Displays. In Proc. OZCHI, pp. 303-310. ACM, New York, 2007. doi> 10.1145/1324892.1324956
[9] A. Bezerianos and R. Balakrishnan., The Vacuum: Facilitating the Manip-ulation of Distant Objects. In Proc. CHI, pp. 361-370. ACM, New York, 2005. doi> 10.1145/1054972.1055023
[10] A. Bezerianos, P. Dragicevic, and R. Balakrishnan., Mnemonic Rendering: An Image-based Approach for Exposing Hidden Changes in Dynamic Displays. In Proc. UIST, pp. 159-168. ACM, New York, 2006. doi> 10.1145/1166253.1166279
[11] X. Bi, S.-H. Bae, and R. Balakrishnan., Effects of Interior Bezels of Tiled-Monitor Large Displays on Visual Search, Tunnel Steering, and Target Selection. In Proc. CHI, pp. 65-74. ACM, New York, 2010. doi> 10.1145/1753326.1753337
[12] W. S, Cleveland The Elements of Graphing Data. Wadsworth Advanced Book Program, 1985.
[13] W. S. Cleveland and R. McGill., Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods Journal of the American Statistical Association, 79(387): 531-554, Sept. 1984. doi> 10.2307/2288400
[14] W. S. Cleveland and R. McGill., Graphical Perception and Graphical Methods for Analyzing Scientific Data Science, 229(4716): 828-833, Aug. 1985. doi> 10.1126/science.229.4716.828
[15] M. Czerwinski,D. S. Tan,, and G. G. Robertson., Women Take a Wider View. In Proc. CHI, pp. 195-202. ACM, New York, 2002. doi> 10.1145/503376.503412
[16] A. Endert, C. Andrews, Y. H. Lee,, and C. North., Visual Encodings that Support Physical Navigation on Large Displays. In Proc. GI, pp. 103-110. CHCCS, Waterloo, Canada, 2011.
[17] R. Fisher, The Force of Contraction of the Human Ciliary Muscle During Accommodation Journal of Physiology, 270(1): 51-74, Aug. 1977.
[18] J. M. Foley., Depth, Size and Distance in Stereoscopic Vision Attention, Perception, & Psychophysics, 3(4): 265-274, July 1968. doi> 10.375/BF03212742
[19] M. Gleicher, D. Albers, R. Walker., I. Jusufi, C. D. Hansen,, and J. C. Roberts., Visual Comparison for Information Visualization. Information Visualization, 10(4): 289-309, Oct. 2011. doi> 10.1177/1473871611416549
[20] E. B, Goldstein Sensation and Perception. Brooks/Cole Publishing, Pa-cific Grove, USA, 5th edition, 1999.
[21] M. Hancock, M. Nacenta, C. Gutwin,, and S. Carpendale., The Effects of Changing Projection Geometry on the Interpretation of 3D Orientation on Tabletops. In Proc. ITS, pp. 157-164. ACM, New York, 2009. doi> 10.1145/1731903.1731934
[22] C. Harrison and S. E. Hudson., A New Angle on Cheap LCDs: Making Positive Use of Optical Distortion. In Proc. UIST, pp. 537-540. ACM, New York, 2011. doi> 10.1145/2047196.2047266
[23] P. Isenberg, A. Bezerianos, P. Dragicevic,, and J.-D. Fekete., A Study on Dual-Scale Data Charts. IEEE Transactions on Visualization and Computer Graphics, 17(12): 2469-2478, Nov.!Dec. 2011. doi> 10.1109/TVCG.2011.160
[24] R. Jota,M. A. Nacenta,J. A. Jorge, S. Carpendale, and S. Greenberg., A Comparison of Ray Pointing Techniques for Very Large Displays. In Proc. Graphics Interface (GI), pp. 269-276. CIPS, Toronto, 2010.
[25] A. Khan, J. Matejka, G. Fitzmaurice,, and G. Kurtenbach., Spotlight: Di-recting Users’ Attention on Large Displays. In Proc. CHI, pp. 791-798. ACM, New York, 2005. doi> 10.1145/1054972.1055082
[26] S. Kim, X. Cao, H. Zhang,, and D. Tan., Enabling Concurrent Dual Views on Common LCD Screens. In Proc. CHI, pp. 2175-2184. ACM, New York, 2012. doi> 10.1145/2207676.2208369
[27] R. Kruger, S. Carpendale, S. D. Scott,, and S. Greenberg., Roles of Orientation in Tabletop Collaboration: Comprehension, Coordination and Communication. Journal of Computer Supported Collaborative Work, 13(5–6): 501-537, Dec. 2004. doi> 10.1007/s10606–004-5062–8
[28] R. Kruger, S. Carpendale, S. D. Scott,, and A. Tang., Fluid Integration of Rotation and Translation. In Proc. CHI, pp. 601-610. ACM, New York, 2005. doi> 10.1145/1054972.1055055
[29] C. A. Levin and R. N. Haber., Visual Angle as a Determinant of Perceived Interobject Distance Attention, Perception, & Psychophysics, 54(2): 250-259, Mar. 1993. doi> 10.3758/BF03211761
[30] M. A. Nacenta, S. Sakurai, T. Yamaguchi., Y. Miki, Y. Itoh., Y. Kitamura, S. Subramanian,, and C. Gutwin., E-conic: A Perspective-Aware Interface for Multi-Display Environments. In Proc. UIST, pp. 279-288. ACM, New York, 2007. doi> 10.1145/1294211.1294260
[31] E. Pietriga, S. Huot, M. Nancel,, and R. Primet., Rapid Development of User Interfaces on Cluster-Driven Wall Displays with jBricks. In Proc. Engineering Interactive Computing Systems, pp. 185-190. ACM, New York, 2011. doi> 10.1145/1996461.1996518
[32] F. H. Previc., Functional Specialization in the Lower and Upper Visual Fields in Humans: Its Ecological Origins and Neurophysiological Im-plications Behavioral and Brain Sciences, 13(3): 519-542, Sept. 1990. doi> 10.1017/S0140525X00080018
[33] G. Shoemaker, A. Tang, and K. S. Booth., Shadow Reaching: A New Perspective on Interaction for Large Displays. In Proc. UIST, pp. 53-56. ACM, New York, 2007. doi> 10.1145/1294211.1294221
[34] S. S, Stevens Psychophysics. Transaction Publishers, New Brunswick, USA, 2nd edition, 1975.
[35] Stoney Brook University. Stony Brook University Receives NSF Grant to Design Revolutionary Reality Deck. Press Release, July13 2010.
[36] D. S. Tan, D. Gergle, P. Scupelli,, and R. Pausch., With Similar Visual Angles, Larger Displays Improve Spatial Performance. In Proc. CHI, pp. 217-224. ACM, New York, 2003. doi> 10.1145/642611.642650
[37] M. Wagner., The Geometries of Visual Space. Lawrence Erlbaum Asso-ciates, Mahwah, NJ, USA, 2006.
[38] W. M. Wiest and B. Bell., Steven's Exponent for Psychophysical Scaling of Perceived, Remembered, and Inferred Distance. Psychological Bul-letin, 98(3): 457-470, Nov. 1985. doi> 10.1037/0033–2909.98.3.457
[39] D. Wigdor, C. Shen, C. Forlines,, and R. Balakrishnan., Perception of Elementary Graphical Elements in Tabletop and Multi-surface Environments. In Proc. CHI, pp. 473-482. ACM, New York, 2007. doi> 10. 1145/1240624.1240701
[40] B. Yost, Y. Haciahmetoglu, and C. North., Beyond Visual Acuity: The Perceptual Scalability of Information Visualizations for Large Displays. In Proc. CHI, pp. 101-110. ACM, New York, 2007. doi> 10.1145/1240624. 1240639
[41] B. Yost and C. North, The Perceptual Scalability of Visualization IEEE Transactions on Visualization and Computer Graphics, 12(5): 837-844, Sept./Oct. 2006. doi> 10.1109/TVCG.2006.184
15 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool