The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2012 vol.18)
pp: 2392-2401
ABSTRACT
This paper introduces a new feature analysis and visualization method for multifield datasets. Our approach applies a surface-centric model to characterize salient features and form an effective, schematic representation of the data. We propose a simple, geometrically motivated, multifield feature definition. This definition relies on an iterative algorithm that applies existing theory of skeleton derivation to fuse the structures from the constitutive fields into a coherent data description, while addressing noise and spurious details. This paper also presents a new method for non-rigid surface registration between the surfaces of consecutive time steps. This matching is used in conjunction with clustering to discover the interaction patterns between the different fields and their evolution over time. We document the unified visual analysis achieved by our method in the context of several multifield problems from large-scale time-varying simulations.
INDEX TERMS
iterative methods, data visualisation, large-scale time-varying simulation, surface-based structure analysis, multifield time-varying dataset visualization, feature analysis, surface-centric model, salient feature, multifield feature definition, iterative algorithm, nonrigid surface registration, visual analysis, Feature extraction, Correlation, Data visualization, Shape analysis, Context awareness, surface structures, Multifield, time-varying
CITATION
S. S. Barakat, M. Rutten, X. Tricoche, "Surface-Based Structure Analysis and Visualization for Multifield Time-Varying Datasets", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2392-2401, Dec. 2012, doi:10.1109/TVCG.2012.269
REFERENCES
[1] D. Anguelov, P. Srinivasan, H. cheung Pang,, and D. Koller., The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. In In TR-SAIL-2004–100, at http://robotics.stanford.edudragolccltr 100.pdj, pages 33-40, 2004.
[2] S. Barakat, N. Andrysco, and X. Tricoche, Fast extraction of highquality crease surfaces for visual analysis Computer Graphics Forum, 30:961970. 2011.
[3] C. M, Bishop Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
[4] G. Borgefors., Distance transformations in arbitrary dimensions. 27(3): 321-345, September 1984.
[5] H. Doleisch and H. Hauser., Smooth brushing for focus+context visualization of simulation data in 3d. In Journal of WSCG, pages 147-154, 2001.
[6] D. Eberly, R. Gardner, B. Morse,, and S. Pizer., Ridges for image analysis. Journal of Mathematical Imaging and Vision, 4: 351-371, 1994.
[7] D. Eberly, R. Gardner, B. Morse., S. Pizer, and C. Scharlach, Ridges for image analysis Journal of Mathematical Imaging and Vision, 4: 353-373, 1994. 10.1007/BFO 1262402.
[8] U. M. Fayyad and K. B. Irani., Multi-interval discretization of continuous-valued attributes for classification learning. In IJCAI, pages 1022-1029, 1993.
[9] L. Gosink, J. Anderson, W. Bethel,, and K. Joy., Variable interactions in query-driven visualization. IEEE Transactions on Visualization and Computer Graohics. 13: 1400-1407. November 2007.
[10] L. J. Gosink, S. Member, J. C. Anderson, S. Member, E. W. Bethel,, and K. I. Joy., Variable interactions in query-driven visualization Visualization and Computer Graphics, IEEE Transactions on, 13:2007, 2007.
[11] J. H, B. M, T. X,, and S. G. Automatic, detection and visualization of distinctive structures in 3d unsteady multi-fields. Computer Graphics Forum, 27:767774. 2008.
[12] R. W. Hamming., Error detecting and error correcting codes Bell System Tech. J., 29: 147-160. 1950.
[13] A. K, Jain Fundamentals of Digital Image Processing, chapter 9, page 382. Prentice Hall 1988.
[14] H. Janicke, M. Bottinger, and G. Scheuermann, Brushing of attribute clouds for the visualization of multivariate data Visualization and Computer Graphics, IEEE Transactions on, 14(6): 1459-1466, nov.-dec. 2008.
[15] H. Jnicke, A. Wiebel, G. Scheuermann,, and W. Kollmann., Multifield visualization using local statistical complexity, 2007.
[16] G. Kindlmann,R. San Jose Estepar,S. M. Smith,, and C.-F. Westin., Sampling and visualizing creases with scale-space particles. IEEE Transactions on Visualization and Computer Graphics, 15(6): 1415-1424, 2009.
[17] G. Kindlmann, X. Tricoche, and C.-F. Westin, Delineating white matter structure in diffusion tensor MRI with anisotropy creases Medical Image Analvsis, 11(5): 492-502. October 2007.
[18] J. Kniss, P. McCormick, A. McPherson., J. Ahrens, J. Painter., A. Keahey, and C. Hansen, Interactive texture-based volume rendering for large data sets IEEE Comout. Graoh. Avvl. 21: 52-61. July 2001.
[19] T. Lindeberg., Edge detection and ridge detection with automatic scale selection. In 1996, pages 465-470, June 1996.
[20] Y. Lipman and T. Funkhouser., Mbius voting for surface correspondence. In ACM SIGGRAPH 2009 papers, SIGGRAPH ‘09, pages 72:1-72:12, New York. NY. USA. 2009. ACM.
[21] N. Litke, M. Droske, M. Rumpf,, and P. Schroder., An image processing approach to surface matching. In Proceedings of the third Eurographics symposium on Geometry processing, Aire-Ia-Ville, Switzerland, Switzerland, 2005. Eurographics Association.
[22] A. R. Martin and M. O. Ward., High dimensional brushing for interactive exploration of multivariate data. In Proceedings of the 6th conference on Visualization ‘95, VIS ‘95, pages 271–, Washington, DC, USA, 1995. IEEE Computer Society.
[23] A. Myronenko and X. Song, Point set registration: Coherent point drift Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(12): 2262-2275. dec. 2010.
[24] R. Peikert and F. Sadlo., Height Ridge Computation and Filtering for Visualization. In I. Fujishiro, H. Li, and K.-L. Ma, editors, Proceedings of Pacific Vis 2008, pages 119-126. March 2008.
[25] H. Qu, W.-Y. Chan, A. Xu., K.-L. Chung, K.-H. Lau,, and P. Guo., Visual analysis of the air pollution problem in hong kong. Visualization and Computer Graphics, IEEE Transactions on, 13(6): 1408-1415, nov.-dec. 2007.
[26] N. Sauber, H. Theisel, and H.-P. Seidel, Multifield-graphs: An approach to visualizing correlations in multifield scalar data IEEE Transactions on Vlsualiration and Computer Graphics. 12: 917-924. 2006.
[27] D. Schneider and P. Eisert., Fast nonrigid mesh registration with a data-driven deformation prior. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on, pages 304-311, 27 2009-oct. 4 2009.
[28] T. Schultz, H. Theisel, and H.-P. Seidel, Crease surfaces: From theory to extraction and application to diffusion tensor MRI IEEE Transactions on Visualization and Computer Graphics, 16(1): 109-119, 2010.
[29] C. E. Shannon., A mathematical theory of communication Bell system technical journal. 27. 1948.
[30] D. Silver and X. Wang, Tracking and visualizing turbulent 3d features Visualization and Computer Graphics, IEEE Transactions on, 3(2): 129-141. apr-jun 1997.
[31] K. Stockinger, J. Shalf, W. Bethel,, and K. Wu., Dex: Increasing the capability of scientific data analysis pipelines by using efficient bitmap indices to accelerate scientific visualization. In In International Conference on Scientific and Statistical Database Management (SSDBM, pages 35-44. IEEE Computer Society Press, 2005.
[32] X. Tricoche, G. Kindlmann, and C.-F. Westin, Invariant crease lines for topological and structural analysis of tensor fields IEEE Transactions on Visualization and Computer Graphics. 2008.
[33] C. Wang, H. Yu, R. Grout., K.-L. Ma, and J. Chen., Analyzing information transfer in time-varying multivariate data. In Pacific Visualization Symposium (Pacific Vis), 2011 IEEE, pages 99-106, march 2011.
[34] C. Wang, H. Yu, and K.-L. Ma, Importance-driven time-varying data visualization Visualization and Computer Graphics, IEEE Transactions on, 14(6): 1547-1554, nov.-dec. 2008.
[35] P. Xiao, N. Barnes, P. Lieby,, and T. Caetano., Sparse update for loopy belief propagation: Fast dense registration for large state spaces. In Digital Image Computing: Techniques and Applications (DICTA), 2010 International Conference on, pages 546-551, dec. 2010.
[36] Y. Zeng, C. Wang, Y. Wang., X. Gu, D. Samaras,, and N. Paragios., Dense non-rigid surface registration using high-order graph matching. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 382-389, june 2010.
6 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool