The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2012 vol.18)
pp: 2355-2363
Cheuk Yiu Ip , Inst. for Adv. Comput. Studies, Univ. of Maryland, College Park, MD, USA
A. Varshney , Inst. for Adv. Comput. Studies, Univ. of Maryland, College Park, MD, USA
J. JaJa , Inst. for Adv. Comput. Studies, Univ. of Maryland, College Park, MD, USA
ABSTRACT
Visual exploration of volumetric datasets to discover the embedded features and spatial structures is a challenging and tedious task. In this paper we present a semi-automatic approach to this problem that works by visually segmenting the intensity-gradient 2D histogram of a volumetric dataset into an exploration hierarchy. Our approach mimics user exploration behavior by analyzing the histogram with the normalized-cut multilevel segmentation technique. Unlike previous work in this area, our technique segments the histogram into a reasonable set of intuitive components that are mutually exclusive and collectively exhaustive. We use information-theoretic measures of the volumetric data segments to guide the exploration. This provides a data-driven coarse-to-fine hierarchy for a user to interactively navigate the volume in a meaningful manner.
INDEX TERMS
information theory, data visualisation, gradient methods, image segmentation, data-driven coarse-to-fine hierarchy, hierarchical volume exploration, intensity-gradient histogram, visual exploration, volumetric dataset, visual segmentation, intensity-gradient 2D histogram, exploration hierarchy, user exploration behavior, normalized-cut multilevel segmentation, histogram segmentation, information-theoretic measures, volumetric data segment, Histograms, Image segmentation, Visualization, Entropy, Transfer functions, Shape analysis, Volume measurement, Information-guided exploration, Volume exploration, volume classification, normalized cut
CITATION
Cheuk Yiu Ip, A. Varshney, J. JaJa, "Hierarchical Exploration of Volumes Using Multilevel Segmentation of the Intensity-Gradient Histograms", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2355-2363, Dec. 2012, doi:10.1109/TVCG.2012.231
REFERENCES
[1] D. Bartz, D. Mayer, J. Fischer., S. Ley, A. Rio., S. Thust, C. P. Heussel,H. U. Kauczor,, and W. Straßer., Hybrid segmentation and exploration of the human lungs. In IEEE Visualization, page 24, 2003.
[2] M. Chen and H. Jänicke., An information-theoretic framework for visualization. IEEE Transactions on Visualization and Computer Graphics, 16: 1206-1215, November 2010. doi: 10.1109/TVCG.2010.132.
[3] H. Childs, E. Brugger, K. Bonnell., J. Meredith, M. Miller., B. Whitlock, and N. Max., A contract based system for large data visualization. In IEEE Visualization, pages 191-198, 2005. doi: 10.1109/VISUAL.2005.1532795.
[4] D. Comaniciu and P. Meer, Mean shift: a robust approach toward feature space analysis IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5): 603-619, 2002. doi: 10.1109/34.1000236.
[5] C. Correa and K.-L. Ma, Size-based transfer functions: A new volume exploration technique IEEE Transactions on Visualization and Computer Graphics, 14(6): 1380-1387, 2008. doi: 10.1109/TVCG.2008162.
[6] C. D. Correa and K.-L. Ma., Visibility histograms and visibility-driven transfer functions IEEE Transactions on Visualization and Computer Graphics, 17: 192-204, 2011. doi: 10.1109/TVCG.2010.35.
[7] T. Cour, F. Benezit, and J. Shi., Spectral segmentation with multiscale graph decomposition. In Computer Vision and Pattern Recognition, pages 1124-1131, 2005. doi: 10.1109/CVPR.2005.332.
[8] P. Felzenszwalb and D. Huttenlocher, Efficient graph-based image segmentation International Journal of Computer Vision, 59(2): 167-181, 2004.
[9] T. Fogal and J. Krüger., Tuvok, an architecture for large scale volume rendering. In International Workshop on Vision, Modeling, and Visualization, 2010.
[10] J. Freixenet, X. Munoz, D. Raba., J. Marti, and X. Cufí., Yet another survey on image segmentation: Region and boundary information integration. In European Conference on Computer Vision, pages 408-422, 2002.
[11] I. Fujishiro, T. Azuma, and Y. Takeshima., Automating transfer function design for comprehensible volume rendering based on 3D field topology analysis (case study). In IEEE Visualization, pages 467-470, 1999.
[12] A. R. Fuller,R. J. Zawadzki, S. Choi, D. F. Wiley,J. S. Werner,, and B. Hamann., Segmentation of three-dimensional retinal image data IEEE Transactions on Visualization and Computer Graphics, 13(6): 1719-1726, 2007. doi: 10.1109/TVCG.2007.7059O.
[13] L. Grady, T. Schiwietz, S. Aharon,, and R. Westermann., Random walks for interactive organ segmentation in two and three dimensions: Implementation and validation. In MICCAI, pages 773-780, 2005.
[14] R. Huang and K.-L. Ma., Rgvis: Region growing based techniques for volume visualization. In PacificGraphics, pages 355-363, 2003.
[15] M. Hussein, A. Varshney, and L. Davis., On implementing graph cuts on CUDA. In First workshop on General Purpose Processing on Graphics Processing Units, 2007.
[16] C. Y. Ip and A. Varshney., Saliency-assisted navigation of very large landscape images. IEEE Transactions on Visualization and Computer Graphics, 17(12): 1737-1746, 2011. doi: 10.1109/TVCG.2011.231.
[17] H. Janicke, M. Bottinger, U. Mikolajewicz,, and G. Scheuermann., Visual exploration of climate variability changes using wavelet analysis. IEEE Transactions on Visualization and Computer Graphics, 15(6): 1375-1382, 2009.
[18] H. Jänicke and G. Scheuermann., Measuring complexity in Lagrangian and Eulerian flow descriptions. Computer Graphics Forum, 29(6): 1783-1794, 2010.
[19] H. Jänicke and G. Scheuermann., Visual analysis of flow features using information theory. IEEE Computer Graphics & Applications, 30: 40-49, 2010. doi: 10.1109/MCG.2010.17.
[20] C. Johnson, Top scientific visualization research problems IEEE Computer Graphics & Applications, 24(4): 13-17, 2004. doi: 10.1109/MCG.2004.20.
[21] J. Kim and J. JaJa., Information-aware 2”-tree for efficient out-of-core indexing of very large multidimensional volumetric data. In International Conference on Scientific and Statistical Database Management, July 2007. doi: 10.1109/SSDBM.2007.15.
[22] Y. Kim and A. Varshney, Saliency-guided enhancement for volume visualization IEEE Transactions on Visualization and Computer Graphics, 12(5): 925-932, 2006.
[23] G. L. Kindlmann and J. W. Durkin., Semi-automatic generation of transfer functions for direct volume rendering. In IEEE Symposium on Volume Visualization, pages 79-86, 1998.
[24] J. Kniss, G. Kindlmann, and C. Hansen, Multidimensional transfer functions for interactive volume rendering IEEE Transactions on Visualization and Computer Graphics, 8: 270-285, 2002. doi: 10.1109/TVCG.2002.1021579.
[25] J. Kniss and G. Wang, Supervised manifold distance segmentation IEEE Transactions on Visualization and Computer Graphics, 17(11): 1637-1649, 2011. doi: 10.1109/TVCG.2010.120.
[26] R. Maciejewski, I. Woo, W. Chen,, and D. Ebert., Structuring feature space: A non-parametric method for volumetric transfer function generation. IEEE Transactions on Visualization and Computer Graphics, 15: 1473-1480, 2009. doi: 10.1109/TVCG.2009.185.
[27] J. Meyer-Spradow, T. Ropinski, J. Mensmann,, and K. Hinrichs., Voreen: A rapid-prototyping environment for ray-casting-based volume visualizations. IEEE Computer Graphics & Applications, 29(6): 6-13, 2009. doi:10.1109/MCG.2009. 130.
[28] R. Patro,C. Y. Ip, S. Bista, S. Cho., D. Thirumalai, and A. Varshney., MDMap: A system for data-driven layout and exploration of molecular dynamics simulations. In BioVis, pages 111-118, 2011. doi:10.1109/BioVis.2011.6094055.
[29] H. Pfister, B. Lorensen, C. Bajaj., G. Kindlmann, W. Schroeder,L. S. Avila, K. Martin, R. Machiraju,, and J. Lee., The transfer function bake-off. IEEE Computer Graphics & Applications, 21: 16-22, 2001. doi: 10.1109/38. 920623.
[30] J.-S. Prassni, T. Ropinski, and K. Hinrichs, Uncertainty-aware guided volume segmentation IEEE Transactions on Visualization and Computer Graphics, 16(6): 1358-1365, 2010. doi:10.1109/TVCG.2010. 208.
[31] J. R, Quinlan C4.5: programsfor machine learning. Morgan kaufmann, 1993.
[32] S. Roettger, M. Bauer, and M. Stamminger., Spatialized transfer functions. In EuroVis, pages 271-278, 2005.
[33] M. Ruiz, A. Bardera, I. Boada., I. Viola, M. Feixas,, and M. Sbert., Automatic transfer functions based on informational divergence. IEEE Transactions on Visualization and Computer Graphics, 17(12): 1932-1941, 2011. doi:10.1109/TVCG.2011.173.
[34] C. R. Salama, M. Keller, and P. Kohlmann., High-level user interfaces for transfer function design with semantics IEEE Transactions on Visualization and Computer Graphics. 12(5): 1021-1028. 2006.
[35] M. A. Selver, and C. Guzelic,Semiautomatic transfer function initialization for abdominal visualization using self-generating hierarchical radial basis function networks IEEE Transactions on Visualization and Computer Graphics, 15(3): 395-409, 2009.
[36] P. Åereda, A. Bartroli, I. Serlie,, and F. Gerritsen., Visualization of boundaries in volumetric data sets using LH histograms. IEEE Transactions on Visualization and Computer Graphics. 12(2): 208-218. 2006.
[37] P. Åereda, A. Vilanova, and F. Gerritsen., Automating transfer function design for volume rendering using hierarchical clustering of material boundaries. In EuroVis, pages 243-250, 2006.
[38] E. Sharon, M. Galun, D. Sharon., R. Basri, and A. Brandt, Hierarchy and adaptivity in segmenting visual scenes NATURE, 442(7104): 810, 2006.
[39] A. Sherbondy, M. Houston, and S. Napel., Fast volume segmentation with simultaneous visualization using programmable graphics hardware. In IEEE Visualization, page 23, 2003.
[40] J. Shi and J. Malik, Normalized cuts and image segmentation IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8): 888-905, 2000. doi: 10.1109/34.868688.
[41] T. Torsney-Weir, A. Saad, T. Moller., H. Hege, B. Weber,J. Verb avatz,, and S. Bergner., Tuner: Principled parameter finding for image segmentation algorithms using visual response surface exploration. IEEE Transactions on Visualization and Computer Graphics, 17(12): 1892-1901, 2011. doi:10.1109/TVCG.2011. 248.
[42] F.-Y. Tzeng,E. B. Lum,, and K.-L. Ma., An intelligent system approach to higher-dimensional classification of volume data. IEEE Transactions on Visualization and Computer Graphics, 11: 273-284, 2005. doi: 10. 1109/TVCG.2005. 38.
[43] Y. Wang, W. Chen, G. Shan., T. Dong,, and X. Chi., Volume exploration using ellipsoidal Gaussian transfer functions. In PacificVis, pages 25-32, 2010. doi:10.1109/PACIFICVIS.2010.5429612.
[44] Y. Wang, W. Chen, J. Zhang., T. Dong, G. Shan,, and X. Chi., Efficient volume exploration using the Gaussian mixture model. IEEE Transactions on Visualization and Computer Graphics, 17(11): 1560-1573, 2011. doi:10.1109/TVCG.2011. 97.
[45] S. X. Yu and J. Shi., Multiclass spectral clustering. In International Conference on Computer Vision, pages 313-319, 2003. doi: 10.1109/ICCV.2003.1238361.
[46] J. Zhou and M. Takatsuka, Automatic transfer function generation using contour tree controlled residue flow model and color harmonics IEEE Transactions on Visualization and Computer Graphics, 15(6): 1481-1488, 2009. doi: 10.1109/TVCG.2009.120.
20 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool