The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2012 vol.18)
pp: 2345-2354
Gunnar Lathen , Linköping University
Stefan Lindholm , Linköping University
Reiner Lenz , Linköping University
Anders Persson , Linköping University
Magnus Borga , Linköping University
ABSTRACT
Computed Tomography Angiography (CTA) is commonly used in clinical routine for diagnosing vascular diseases. The procedure involves the injection of a contrast agent into the blood stream to increase the contrast between the blood vessels and the surrounding tissue in the image data. CTA is often visualized with Direct Volume Rendering (DVR) where the enhanced image contrast is important for the construction of Transfer Functions (TFs). For increased efficiency, clinical routine heavily relies on preset TFs to simplify the creation of such visualizations for a physician. In practice, however, TF presets often do not yield optimal images due to variations in mixture concentration of contrast agent in the blood stream. In this paper we propose an automatic, optimizationbased method that shifts TF presets to account for general deviations and local variations of the intensity of contrast enhanced blood vessels. Some of the advantages of this method are the following. It computationally automates large parts of a process that is currently performed manually. It performs the TF shift locally and can thus optimize larger portions of the image than is possible with manual interaction. The method is based on a well known vesselness descriptor in the definition of the optimization criterion. The performance of the method is illustrated by clinically relevant CT angiography datasets displaying both improved structural overviews of vessel trees and improved adaption to local variations of contrast concentration.
INDEX TERMS
Optimization, Data visualization, Rendering (computer graphics), Blood vessels, Biomedical imaging, vessel visualization, Direct volume rendering, transfer functions
CITATION
Gunnar Lathen, Stefan Lindholm, Reiner Lenz, Anders Persson, Magnus Borga, "Automatic Tuning of Spatially Varying Transfer Functions for Blood Vessel Visualization", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2345-2354, Dec. 2012, doi:10.1109/TVCG.2012.203
REFERENCES
[1] K. P. Andriole,R. L. Morin,R. L. Arenson,J. A. Carrino,B. J. Erickson,S. C. Horii,D. W. Piraino,B. I. Reiner,J. A. Seibert,, and E. Siegel., Addressing the coming radiology crisis-the Society for Computer Applications in Radiology transforming the radiological interpretation process (TRIP) initiative Journal of digital imaging the official journal of the Society for Computer Applications in Radiology, 17(4): 235-243, 2004.
[2] K. Bühler, P. Felkel, and A. L. Cruz., Geometric methods for vessel visualization and quantification - a survey. In H. M. G. Brunnett, B. Hamann editor, Geometric Modelling for Scientific Visualization. Springer Verlag, 2003.
[3] C. Correa, and K.-L. Ma, Size-based transfer functions: A new volume ex-ploration technique Visualization and Computer Graphics, IEEE Transactions on, 14(6): 1380-1387, nov.-dec. 2008.
[4] R. A. Drebin, L. Carpenter, and P. Hanrahan., Volume rendering. In SIGGRAPH ‘88: Proceedings of the 15th annual conference on Computer graphics and interactive techniques, pages 65-74, New York, NY, USA, 1988. ACM.
[5] K. Drechsler and C. Laura., Comparison of vesselness functions for mul-tiscale analysis of the liver vasculature. In Information Technology and Applications in Biomedicine (ITAB), 2010 10th IEEE International Conference on, pages 1-5, nov. 2010.
[6] M. Haidacher, D. Patel, S. Bruckner., A. Kanitsar, and M. Groller., Volume visualization based on statistical transfer-function spaces. In Pacific Visualization Symposium (PacificVis), 2010 IEEE, pages 17-24, mar. 2010.
[7] T. He, L. Hong, A. Kaufman,, and H. Pfister., Generation of transfer functions with stochastic search techniques. In Proceedings of the 7th conference on Visualization ‘96, VIS ‘96, pages 227-ff., Los Alamitos, CA, USA, 1996. IEEE Computer Society Press.
[8] J. Hladuvka,A. König,, and E. Gröller., Curvature-based transfer functions for direct volume rendering. In In Bianca Falcidieno, editor, Spring Conference on Computer Graphics 2000, pages 58-65, 2000.
[9] A. Joshi, X. Qian, D. Dione., K. Bulsara, C. Breuer., A. Sinusas, and X. Pa-pademetris., Effective visualization of complex vascular structures using a non-parametric vessel detection method. IEEE Transactions on Visualization and Computer Graphics, 14: 1603-1610, 2008.
[10] G. Kindlmann and J. W. Durkin., Semi-automatic generation of transfer functions for direct volume rendering. In Proceedings of the 1998 IEEE symposium on Volume visualization, VVS ‘98, pages 79-86, New York, NY, USA, 1998. ACM.
[11] G. Kindlmann, R. Whitaker, T. Tasdizen,, and T. Moller., Curvature-based transfer functions for direct volume rendering: Methods and applications. In Proceedings of the 14th IEEE Visualization 2003 (VIS‘03), VIS ‘03, pages 67–, Washington, DC, USA, 2003. IEEE Computer Society.
[12] C. Kirbas and F. Quek, A review of vessel extraction techniques and algorithms ACM Comput. Surv., 36(2): 81-121, 2004.
[13] J. Kniss, G. Kindlmann, and C. Hansen, Multidimensional transfer functions for interactive volume rendering IEEE Transactions on Visualization and Computer Graphics, 8(3): 270-285, 2002.
[14] C. Kubisch, S. Glaer, M. Neugebauer,, and B. Preim., Vessel visualization with volume rendering. In L. Linsen, H. Hagen, B. Hamann,, and H.-C. Hege, editors, , Visualization in Medicine and Life Sciences II, Mathemat-ics and Visualization, pages 109-134. Springer Berlin Heidelberg, 2012.
[15] D. Laidlaw, K. Fleischer, and A. Barr, Partial-volume bayesian classification of material mixtures in mr volume data using voxel histograms Medical Imaging, IEEE Transactions on, 17(1): 74-86, feb. 1998.
[16] D. Lesage,E. D. Angelini, I. Bloch, and G. Funka-Lea., A review of 3d vessel lumen segmentation techniques: Models, features and extraction schemes. Medical Image Analysis, 13(6): 819-845, 2009.
[17] M. Levoy, Volume rendering: Display of surfaces from volume data Computer Graphics and Applications, IEEE, 8(3): 29-37, may. 1988.
[18] S. Lindholm, P. Ljung, C. Lundström, A. Persson, and A. Ynnerman, Spatial conditioning of transfer functions using local material distributions Visualization and Computer Graphics, IEEE Transactions on, 16(6): 1301-1310, nov.-dec. 2010.
[19] C. Lundström, P. Ljung, and A. Ynnerman, Local histograms for design of transfer functions in direct volume rendering Visualization and Computer Graphics, IEEE Transactions on, 12(6): 1570-1579, 2006.
[20] C. Lundström and A. Persson., Characterizing visual analytics in diagnostic imaging. International Workshop on Visual Analytics, 2011.
[21] C. Lundstrom, A. Ynnerman, P. Ljung., A. Persson, and H. Knutsson., The alpha-histogram: Using spatial coherence to enhance histograms and transfer function design. In Proceedings Eurographics/IEEE Symposium on Visualization 2006, Lisbon, Portugal, pages 227-234, 2006.
[22] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson,J. Hod-gins, T. Kang, B. Mirtich., H. Pfister, W. Ruml., K. Ryall, J. Seims,, and S. Shieber., Design galleries: a general approach to setting parameters for computer graphics and animation. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques, SIGGRAPH ‘97, pages 389-400, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.
[23] D. Patel, M. Haidacher, J.-P. Balabanian,, and E. Groller., Moment curves. In Visualization Symposium, 2009. PacificVis ‘09. IEEE Pacific, pages 201-208, apr. 2009.
[24] H. Pfister, B. Lorensen, C. Bajaj., G. Kindlmann, W. Schroeder., L. Avila, K. Raghu., R. Machiraju, and J. Lee, The transfer function bake-off Computer Graphics and Applications, IEEE, 21(3): 16-22, may/jun 2001.
[25] J.-S. PraBni, T. Ropinski, J. Mensmann,, and K. H. Hinrichs., Shape-based transfer functions for volume visualization. In IEEE Pacific Visualization Symposium (Pacificvis 2010), pages 9-16, mar 2010.
[26] B. Reiner, One size (doesn‘t) fit all Journal of the American College of Radiology, 5(4): 567-570, 2008.
[27] S. Roettger, M. Bauer, and M. Stamminger., Spatialized transfer functions. In Proc. EuroVis ‘05, pages 271-278. IEEE Computer Society Press, 2005.
[28] T. Ropinski, J.-S. PraBni, F. Steinicke,, and K. Hinrichs., Stroke-based transfer function design. In IEEE/EG Volume and Point-Based Graphics, pages 41-48, 2008.
[29] Y. Sato, C. Westin, A. Bhalerao., S. Nakajima, N. Shiraga., S. Tamura, and R. Kikinis, Tissue classification based on 3d local intensity structures for volume rendering Visualization and Computer Graphics, IEEE Transactions on, 6(2): 160-180, apr. 2000.
[30] S. Takahashi, Y. Takeshima, and I. Fujishiro, Topological volume skele-tonization and its application to transfer function design Graph. Models, 66(1): 24-49, 2004.
[31] S. Tenginakai, J. Lee, and R. Machiraju., Salient iso-surface detection with model-independent statistical signatures. In Visualization, 2001. VIS ‘01. Proceedings, pages 231-238, oct. 2001.
[32] G. Weber, S. Dillard, H. Carr., V. Pascucci, and B. Hamann, Topology-controlled volume rendering Visualization and Computer Graphics, IEEE Transactions on, 13(2): 330-341, march-april 2007.
[33] Y. Wu and H. Qu, Interactive transfer function design based on editing direct volume rendered images Visualization and Computer Graphics, IEEE Transactions on, 13(5): 1027-1040, sept.-oct. 2007.
[34] J. Zhou and M. Takatsuka, Automatic transfer function generation using contour tree controlled residue flow model and color harmonics Visualization and Computer Graphics, IEEE Transactions on, 15(6): 1481-1488, nov.-dec. 2009.
16 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool