The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2012 vol.18)
pp: 2275-2284
Daniel Engel , University of Kaiserslautern, Germany
Klaus Greff , University of Kaiserslautern, Germany
Christoph Garth , University of Kaiserslautern, Germany
Keith Bein , Air Quality Research Center (AQRC), University of California, Davis, CA, USA
Anthony Wexler , Air Quality Research Center (AQRC), University of California, Davis, CA, USA
Bernd Hamann , Institute for Data Analysis and Visualization (IDAV), University of California, Davis, CA, USA
Hans Hagen , University of Kaiserslautern, Germany
ABSTRACT
The study of aerosol composition for air quality research involves the analysis of high-dimensional single particle mass spectrometry data. We describe, apply, and evaluate a novel interactive visual framework for dimensionality reduction of such data. Our framework is based on non-negative matrix factorization with specifically defined regularization terms that aid in resolving mass spectrum ambiguity. Thereby, visualization assumes a key role in providing insight into and allowing to actively control a heretofore elusive data processing step, and thus enabling rapid analysis meaningful to domain scientists. In extending existing black box schemes, we explore design choices for visualizing, interacting with, and steering the factorization process to produce physically meaningful results. A domain-expert evaluation of our system performed by the air quality research experts involved in this effort has shown that our method and prototype admits the finding of unambiguous and physically correct lower-dimensional basis transformations of mass spectrometry data at significantly increased speed and a higher degree of ease.
INDEX TERMS
Data visualization, Aerosols, Error analysis, Optimization, Atmospheric measurements, Mass spectroscopy, multidimensional data visualization, Dimension reduction, mass spectrometry data, matrix factorization, visual encodings of numerical error metrics
CITATION
Daniel Engel, Klaus Greff, Christoph Garth, Keith Bein, Anthony Wexler, Bernd Hamann, Hans Hagen, "Visual Steering and Verification of Mass Spectrometry Data Factorization in Air Quality Research", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2275-2284, Dec. 2012, doi:10.1109/TVCG.2012.280
REFERENCES
[1] A. O. Artero and M. C. F. de Oliveira., Levkowitz h.: Uncovering clusters in crowded parallel coordinates visualizations IEEE Symp. on Information Visualization, 2004.
[2] K. J. Bein, Y. Zhao, and A. S. Wexler., Conditional sampling for sourceoriented toxicological studies using a single particle mass spectrometer Environmental science technology, 43(24): 9445-9452, 2009.
[3] K. J. Bein,Y. J. Zhao,A. S. Wexler,, and M. V. Johnston., Speciation of size-resolved individual ultrafine particles in pittsburgh, pennsylvania Journal of Geophysical Research, 110(D7): 1-22, 2005.
[4] D. Carlsen, M. Malone, J. Kollat,, and T. W. Simpson., Evaluating the performance of visual steering commands for user-guided pareto frontier sampling during trade space exploration. ASME Conference Proceedings, 2008(43253): 499-509, 2008.
[5] D. Chen and R. J. Plemmons., Nonnegativity constraints in numerical analysis historical comments on enforcing nonnegativity Office, pages 1-32, 2007.
[6] P. Comon., Independent component analysis, a new concept? Signal Process., 36(3): 287-314, Apr. 1994.
[7] P. Comon and C. Jutten., Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, 1 st edition, 2010.
[8] N. Elmqvist, P. Dragicevic, and J.-D. Fekete, Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation IEEE Transactions on Visualization and Computer Graphics, 14: 1141-1148, 2008.
[9] E. Esser,M. Möller, S. Osher, G. Sapiro,, and J. Xin., A convex model for non-negative matrix factorization and dimensionality reduction on physical space. Arxiv preprint arXiv11020844, stat.ML:14, 2011.
[10] B. J. Ferdosi and J. B. T. M. Roerdink., Visualizing high-dimensional structures by dimension ordering and filtering using subspace analysis Comput. Graph. Forum, 30(3): 1121-1130, 2011.
[11] G. Grinstein, M. Trutschl, and U. Cvek., High-dimensional visualizations. In Proceedings of Visual Data Mining workshop, KDD’2001, 2001.
[12] D. S. Gross, R. Atlas, J. Rzeszotarski., E. Turetsky, J. Christensen., S. Benzaid, J. Olson., T. Smith, L. Steinberg., J. Sulman, A. Ritz., B. Anderson, C. Nelson,D. R. Musicant, L. Chen, D. C. Snyder,, and J. J. Schauer., Environmental chemistry through intelligent atmospheric data analysis Environmental Modelling & Software, 25(6): 760-769, 2010.
[13] H. Hauser, F. Ledermann, and H. Doleisch., Angular brushing of extended parallel coordinates. In INFOVIS ‘02: Proceedings of the IEEE Symposium on Information Visualization (InfoVis‘02), page 127, Washington, DC, USA, 2002. IEEE Computer Society.
[14] A. Hyvärinen and E. Oja., Independent component analysis: algorithms and applications. Neural Networks, 13(4-5): 411-430, 2000.
[15] S. Ingram, T. Munzner, and M. Olano, Glimmer: Multilevel mds on the gpu IEEE Transactions on Visualization and Computer Graphics, 15: 249-261. 2009.
[16] A. Inselberg., Parallel Coordinates: Visual Multidimensional Geometry and Its Applications. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2009.
[17] H. Janicke, M. Bottinger, and G. Scheuermann, Brushing of attribute clouds for the visualization of multivariate data IEEE Transactions on Visualization and Computer Graphics, 14: 1459-1466, 2008.
[18] J. Johansson, P. Ljung, M. Jern,, and M. Cooper., Revealing structure within clustered parallel coordinates displays. In Proceedings of the Proceedings of the 2005 IEEE Symposium on Information Visualization, pages 17–, Washington, DC, USA, 2005. IEEE Computer Society.
[19] E. Kim,S. G. Brown,H. R. Hafner,, and P. K. Hopke., Characterization of non-methane volatile organic compounds sources in houston during 2001 using positive matrix factorization. Atmospheric Environment, 39(32): 5934-5946, 2005.
[20] J. Kim and H. Park, Fast nonnegative matrix factorization: an active-set-like method and comparisons Science, 2008.
[21] O. Kreylos,A. M. Tesdall, B. Hamann, J. K. Hunter,, and K. I. Joy., Interactive Visualization and Steering of CFD Simulations, pages 25-34. Eurographics Association, 2002.
[22] R. S. Laramee, C. Garth, H. Doleisch., J. Schneider, H. Hauser,, and H. Hagen., Visual analysis and exploration of fluid flow in a cooling jacket. In In Proceedings IEEE Visualization 2005, pages 623-630, 2005.
[23] D. D. Lee and H. S. Seung., Algorithms for non-negative matrix factorization. In In NIPS, pages 556-562. MIT Press, 2000.
[24] K. T. McDonnell and K. Mueller., Illustrative parallel coordinates IEEE-VGTC Symposium on Visualization 2008, 2008.
[25] A. Messac and X. Chen, Visualizing the optimization process in real-time using physical programming ENGINEERING OPTIMIZATION, 32(6): 721-747, 2000.
[26] D. M. Murphy,A. M. Middlebrook,, and M. Warshawsky., Cluster analysis of data from the particle analysis by laser mass spectrometry (palms) instrument Aerosol Science and Technology, 37(4): 382-391, 2003.
[27] P. Oesterling, C. Heine, H. Janicke,, and G. Scheuermann., Visual analysis of high dimensional point clouds using topological landscapes. In Pacific Visualization Symposium (PacificVis), 2010 IEEE, pages 113-120, Mar. 2010.
[28] F. Paulovich, D. Eler, J. Poco., C. Botha, R. Minghim,, and L. Nonato., Piece wise laplacian-based projection for interactive data exploration and organization. Computer Graphics Forum, 30(3): 1091-1100, 2011.
[29] K. Pearson, On lines and planes of closest fit to systems of points in space Philosophical Magazine, 2(6): 559-572, 1901.
[30] W. Peng,M. O. Ward,, and E. A. Rundensteiner., Clutter reduction in multi-dimensional data visualization using dimension reordering. In In INFOVIS 04: Proceedings of the IEEE Symposium on Information Visualization (INFOVIS04, pages 89-96. IEEE Computer Society, 2004.
[31] J. S. Reid, R. Koppmann, T. F. Eck,, and D. P. Eleuterio., A re-view of biomass burning emissions part ii: intensive physical properties of biomass burning particles Atmospheric Chemistry and Physics, 5(3): 799-825, 2005.
[32] S. T. Roweis and L. K. Saul., Nonlinear dimensionality reduction by locally linear embedding SCIENCE, 290: 2323-2326, 2000.
[33] X.-H. Song,P. K. Hopke,D. P. Fergenson,, and K. A. Prather., Classification of single particles analyzed by atofms using an artificial neural network, art-2a. Analytical Chemistry, 71 (4): 860-865, 1999.
[34] G. Stump, S. Lego, M. Yukish,T. W. Simpson,, and J. A. Donndelinger., Visual steering commands for trade space exploration: User-guided sampling with example. Journal of Computing and Information Science in Engineering, 9(4): 044501, 2009.
[35] J. Tenenbaum, V. Silva, and J. Langford, A global geometric framework for nonlinear dimensionality reduction Science, 290(5500): 2319-2323, 2000.
[36] W. Torgerson., Theory and methods of scaling Wiley, 1958.
[37] M. O. Ward, G. Grinstein, and D. A., Keirn Interactive Data Visualization: Foundations, Techniques, and Application. A. K. Peters, Ltd, 2010.
[38] J. Waser, R. Fuchs, H. Ribicic., B. Schindler, G. Blöschl,, and E. Gröller., World lines. Visualization and Computer Graphics, IEEE Transactions on, 16(6): 1458-1467, nov.-dec. 2010.
[39] K. W. Wilson and B. Raj., Spectrogram dimensionality reduction with independence constraints. In Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on, pages 1938-1941, march 2010.
[40] J. Yang, W. Peng, M. O. Ward,, and E. A. Rundensteiner., Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets. In Proc. IEEE Symposium on Information Visualization, 2003.
[41] A. Zelenyuk, D. Imre, Y. Cai., K. Mueller, Y. Han,, and P. Imrich., Spec-traminer, an interactive data mining and visualization software for single particle mass spectroscopy: A laboratory test case. International Journal of Mass Spectrometry, 258(13): 58-73, 2006.
[42] A. Zelenyuk, D. Imre, E. J. Nam, Y. Han, and K. Mueller, Clustersculptor: Software for expert-steered classification of single particle mass spectra International Journal of Mass Spectrometry, 275(13): 1-10, 2008.
[43] W. Zhao,P. K. Hopke,, and K. A. Prather., Comparison of two cluster analysis methods using single particle mass spectra. Atmospheric Environment, 42(5): 881-892, 2008.
[44] H. Zhou, X. Yuan, H. Qu., W. Cui, and B. Chen, Visual Clustering in Parallel Coordinates Computer Graphics Forum, 27(3): 1047-1054, May 2008.
34 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool