The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2012 vol.18)
pp: 2208-2215
R. Westerteiger , German Aerosp. Center, Univ. of Kaiserslautern, Kaiserslautern, Germany
T. Compton , Dept. of Geol., Univ. of California, Davis, CA, USA
T. Bernadin , Dept. of Comput. Sci., Univ. of California, Davis, CA, USA
E. Cowgill , Dept. of Geol., Univ. of California, Davis, CA, USA
K. Gwinner , German Aerosp. Center (DLR), Inst. of Planetary Res., Berlin, Germany
B. Hamann , Dept. of Comput. Sci., Univ. of California, Davis, CA, USA
A. Gerndt , German Aerosp. Center, Univ. of Kaiserslautern, Kaiserslautern, Germany
H. Hagen , Univ. of Kaiserslautern, Kaiserslautern, Germany
ABSTRACT
Planetary topography is the result of complex interactions between geological processes, of which faulting is a prominent component. Surface-rupturing earthquakes cut and move landforms which develop across active faults, producing characteristic surface displacements across the fault. Geometric models of faults and their associated surface displacements are commonly applied to reconstruct these offsets to enable interpretation of the observed topography. However, current 2D techniques are limited in their capability to convey both the three-dimensional kinematics of faulting and the incremental sequence of events required by a given reconstruction. Here we present a real-time system for interactive retro-deformation of faulted topography to enable reconstruction of fault displacement within a high-resolution (sub 1m/pixel) 3D terrain visualization. We employ geometry shaders on the GPU to intersect the surface mesh with fault-segments interactively specified by the user and transform the resulting surface blocks in realtime according to a kinematic model of fault motion. Our method facilitates a human-in-the-loop approach to reconstruction of fault displacements by providing instant visual feedback while exploring the parameter space. Thus, scientists can evaluate the validity of traditional point-to-point reconstructions by visually examining a smooth interpolation of the displacement in 3D. We show the efficacy of our approach by using it to reconstruct segments of the San Andreas fault, California as well as a graben structure in the Noctis Labyrinthus region on Mars.
INDEX TERMS
real-time systems, astronomy computing, data visualisation, geology, geophysics computing, graphics processing units, Mars, Mars, interactive retro-deformation, 3D fault displacement reconstruction, planetary topography, geological process, surface-rupturing earthquake, active fault, characteristic surface displacement, geometric model, 3D kinematics, real-time system, faulted topography, 3D terrain visualization, geometry shader, GPU, human-in-the-loop approach, visual feedback, point-to-point reconstruction, displacement interpolation, San Andreas fault, graben structure, Noctis Labyrinthus region, Image reconstruction, Terrain mapping, Surface topography, Surface reconstruction, Solid modeling, Rendering (computer graphics), mesh deformation, Terrain rendering, interactive, fault simulation
CITATION
R. Westerteiger, T. Compton, T. Bernadin, E. Cowgill, K. Gwinner, B. Hamann, A. Gerndt, H. Hagen, "Interactive Retro-Deformation of Terrain for Reconstructing 3D Fault Displacements", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2208-2215, Dec. 2012, doi:10.1109/TVCG.2012.239
REFERENCES
[1] J. C. Andrews-Hanna, M. T. Zuber, and S. A. H. II, Strike-slip faults on mars: Observations and implications for global tectonics and geodynamics J. Geophys. Res., 113:E08002, 2008.
[2] T. Bernardin, E. Cowgill, O. Kreylos, C. Bowles, P. Gold, B. Hamann, and L. Kellogg, Crusta: A new virtual globe for real-time visualization of sub-meter digital topography at planetary scales. Computers & Geosciences, 37(1): 75-85, 2011. Virtual Globes in Science.
[3] P. Bird, Finite element modeling of lithosphere deformation: The zagros collision orogeny Tectonophysics, 50(2-3): 307-336, 1978.
[4] M. Botsch and L. Kobbelt, Real-time shape editing using radial basis functions. In Computer Graphics Forum, pages 611-621, 2005.
[5] C. D. Bruyns, S. Senger, A. Menon, K. Montgomery, S. Wildermuth, and R. Boyle, A survey of interactive mesh-cutting techniques and a new method for implementing generalized interactive mesh cutting using virtual tools The Journal of Visualization and Computer Animation, 13(1): 21-42, 2002.
[6] S. Coquillart, Extended free-form deformation: A sculpturing tool for 3d geometric modeling SIGGRAPH Comput. Graph., 24: 187-196, September 1990.
[7] C. D. Correa and D. Silver, Programmable shaders for deformation rendering. In GH ‘07: Proceedings of the 2007 ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages 8996, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.
[8] S. S. Egan, S. Kane, T. S. Buddin, G. D. Williams, and D. Hodgetts, Computer modelling and visualisation of the structural deformation caused by movement along geological faults Computers & Geosciences, 25(3): 283-297, 1999.
[9] K. L. Frankel, K. S. Brantley, J. F. Dolan, R. C. Finkel, R. E. Klinger, J. R. Knott, M. N. Machette, L. A. Owen, F. M. Phillips, J. L. Slate, and B. P. Wernicke, Cosmogenic 10be and 36cl geochronology of offset alluvial fans along the northern death valley fault zone: Implications for transient strain in the eastern california shear zone J. Geophys. Res., 112(B6):B06407, 2007.
[10] M. P. Golombek and R. J. Phillips, Mars tectonics. In Planetary Tectonics. pages 183-232. Cambridge University Press, 2010.
[11] K. Gwinner, F. Scholten, F. Preusker, S. Elgner, T. Roatsch, M. Spiegel, R. Schmidt, J. Oberst, R. J. aumann, and C. Heipke, Topography of mars from global mapping by hrsc high-resolution digital terrain models and orthoimages: Characteristics and performance. Earth and Planetary Science Letters, 294(3-4): 506-519, 2010.
[12] Q. Li and M. Liu, Geometrical impact of the san andreas fault on stress and seismicity in california Geophysical Research Letters, 33, 2006.
[13] T. W. Sederberg and S. R. Parry, Free-form deformation of solid geometric models SIGGRAPH Comput. Graph., 20: 151-160, August 1986.
[14] G. Sela, S. Schein, and G. Elber, Real-time incision simulation using dis-continuous free form deformation. In S. Cotin and D. N. Metaxas, editors, Medical Simulation, volume 3078 of Lecture Notes in Computer Science, pages 114-123. Springer Berlin / Heidelberg, 2004 10.1007/978-3-540-25968-8_ 13.
[15] R. Twiss and E. M. Moores, Structural geology. W. H. Freeman, 1992.
[16] J. V. Aalsburg, M. B. Yikilmaz, O. Kreylos, L. H. Kellogg, and J. B. Rundle, Interactive editing of digital fault models. Concurrency and Computation: Practice and Experience, 22(12): 1720-1731, 2010.
[17] W. von Funck, H. Theisel, and H.-P. Seidel, Vector field based shape deformations In ACM SIGGRAPH 2006 Papers, SIGGRAPH ‘06, pages 1118-1125, New York, NY, USA, 2006. ACM.
[18] R. Westerteiger, A. Gerndt, H. Hagen, and B. Hamann, Spherical terrain rendering using the hierarchical HEALPix grid. In Visualization of Large and Unstructured Data Sets - Applications in Geospatial Planning, Modeling and Engineering (IRTG 1131 workshop). OpenAccess series in Informatics (OASIcs), 2012. (accepted for publication).
[19] H. L. Xing, A. Makinouchi, and P. Mora, Finite element modeling of interacting fault systems Physics of The Earth and Planetary Interiors, 163(1-4): 106-121, 2007. Computational Challenges in the Earth Sci-ences.
[20] O. Zielke and J. R. Arrowsmith, LaDiCaoz and LiDARimager-MATLAB GUIs for LiDAR data handling and lateral displacement measurement. Geosphere, 8(1): 206-221, 2012.
16 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool