The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2012 vol.18)
pp: 2188-2197
S. Wenger , Inst. fur Computergraphik, Tech. Univ. Braunschweig, Braunschweig, Germany
M. Ament , VISUS, Univ. of Stuttgart, Stuttgart, Germany
S. Guthe , Inst. fur Computergraphik, Tech. Univ. Braunschweig, Braunschweig, Germany
D. Lorenz , Inst. for Anal. & Algebra, Tech. Univ. Braunschweig, Braunschweig, Germany
A. Tillmann , Res. Group Optimization, Tech. Univ. Darmstadt, Darmstadt, Germany
D. Weiskopf , VISUS, Univ. of Stuttgart, Stuttgart, Germany
M. Magnor , Inst. fur Computergraphik, Tech. Univ. Braunschweig, Braunschweig, Germany
ABSTRACT
The 3D visualization of astronomical nebulae is a challenging problem since only a single 2D projection is observable from our fixed vantage point on Earth. We attempt to generate plausible and realistic looking volumetric visualizations via a tomographic approach that exploits the spherical or axial symmetry prevalent in some relevant types of nebulae. Different types of symmetry can be implemented by using different randomized distributions of virtual cameras. Our approach is based on an iterative compressed sensing reconstruction algorithm that we extend with support for position-dependent volumetric regularization and linear equality constraints. We present a distributed multi-GPU implementation that is capable of reconstructing high-resolution datasets from arbitrary projections. Its robustness and scalability are demonstrated for astronomical imagery from the Hubble Space Telescope. The resulting volumetric data is visualized using direct volume rendering. Compared to previous approaches, our method preserves a much higher amount of detail and visual variety in the 3D visualization, especially for objects with only approximate symmetry.
INDEX TERMS
rendering (computer graphics), astronomy computing, compressed sensing, data visualisation, graphics processing units, nebulae, direct volume rendering, astronomical nebulae visualization, distributed multiGPU compressed sensing tomography, 3D visualization, single 2D projection, Earth, volumetric visualizations, tomographic approach, spherical symmetry, axial symmetry, compressed sensing reconstruction, position-dependent volumetric regularization, linear equality constraints, distributed multiGPU implementation, high-resolution datasets, astronomical imagery, Hubble Space Telescope, Image reconstruction, Compressed sensing, Graphics processing unit, Memory management, Reconstruction algorithms, direct volume rendering, Astronomical visualization, distributed volume reconstruction
CITATION
S. Wenger, M. Ament, S. Guthe, D. Lorenz, A. Tillmann, D. Weiskopf, M. Magnor, "Visualization of Astronomical Nebulae via Distributed Multi-GPU Compressed Sensing Tomography", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2188-2197, Dec. 2012, doi:10.1109/TVCG.2012.281
REFERENCES
[1] J. Amanatides and A. Woo, A fast voxel traversal algorithm for ray tracing Proceedings of Eurographics, pages 3-10, 1987.
[2] R. Baraniuk, Compressive sensing IEEE Signal Processing Magazine, 24(4): 118-121, 2007.
[3] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems SIAM Journal on Imaging Sciences, 2(1): 183-202, 2009.
[4] K. Bredies, T. Bonesky, D. A. Lorenz”, and P. Maass., A generalized conditional gradient method for non-linear operator equations with sparsity constraints. Inverse Problems, 23: 2041-2058, 2007.
[5] E. J. Candès, J. Romberg, and T. Tao., Stable signal recovery from incomplete and inaccurate measurements Communications on Pure and Applied Mathematics, 59: 1207-1223, 2006.
[6] D. L, Donoho. Compressed sensing IEEE Transactions on Information Theory, 52: 1289-1306, 2006.
[7] S. Eilemann and R. Pajarola., Direct send compositing for parallel sort-last rendering. In Proceedings of the Eurographics Symposium on Parallel Graphics and Visualization, pages 29-36, 2007.
[8] T. García-Díaz,J. A. López, W. Steffen, M. G. Richer,, and H. Riesgo., A Car's Eye view of the Eskimo from Saturn. In Proceedings of the IAU Symposium 283 “Planetary Nebulae: An Eye to the Future”, 2011.
[9] G. Golub and C. Loan., Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, 1996.
[10] R. Gordon, R. Bender, and G. T. Herman., Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography Journal of Theoretical Biology, 29(3): 471-481, 1970.
[11] J. Gregson, M. Krimerman, M. B. Hullin,, and W. Heidrich., Stochastic tomography and its applications in 3D imaging of mixing fluids. ACM Transactions on Graphics, 31(4): 52:1-52:10, 2012.
[12] I. Ihrke and M. Magnor., Image-based tomographic reconstruction of flames. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 365-373, 2004.
[13] B. Jang, D. Kaeli, S. Do,, and H. Pien., Multi GPU implementation of iterative tomographic reconstruction algorithms. In Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pages 185-188, 2009.
[14] X. Jia, Y. Lou, R. Li., W. Song, and S. Jiang, GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation Medical Physics, 37: 1757-1760, 2010.
[15] N. Koning, S. Kwok, and W. Steffen., Morphology of the Red Rectangle proto-planetary nebula. In Proceedings of the IAU Symposium 283 “Planetary Nebulae: An Eye to the Future”, 2011.
[16] D. A. Leahy., Deprojection of emission in axially symmetric transparent systems Astronomy and Astrophysics, 247: 584-589, July 1991.
[17] K.-L. Ma,J. S. Painter,C. D. Hansen,, and M. F. Krogh., Parallel volume rendering using binary-swap compositing. IEEE Computer Graphics and Applications. 14: 59-68, July 1994.
[18] M. Magnor, K. Hildebrand, A. Lintu,, and A. Hanson., Reflection nebula visualization. Proceedings of IEEE Visualization, pages 255-262, 2005.
[19] M. Magnor, G. Kindlmann, C. Hansen,, and N. Durie., Constrained inverse volume rendering for planetary nebulae. In Proceedings of IEEE Visualization, pages 83-90, 2004.
[20] M. Magnor, G. Kindlmann, C. Hansen,, and N. Durie,Reconstruction and visualization of planetary nebulae. IEEE Transactions on Visualization and Computer Graphics, 11(5): 485-496, Sept. 2005.
[21] S. Marchesin, C. Mongenet, and J.-M. Dischler., Multi-GPU sort-last volume visualization. In Proceedings of the Eurographics Symposium on Parallel Graphics and Visualization, pages 1-8, 2008.
[22] S. R. Marschner and R. J. Lobb., An evaluation of reconstruction filters for volume rendering. In Proceedings of IEEE Visualization, pages 100-107, 1994.
[23] N. Max, Optical models for direct volume rendering IEEE Transactions on Visualization and Computer Graphics, 1(2): 99-108, 1995.
[24] C. Melvin, M. Xu, and P. Thulasiraman., HPC for iterative image reconstruction in CT. In Proceedings of the 2008 C3S2E conference, pages 61-68, 2008.
[25] S. Molnar, M. Cox, D. Ellsworth,, and H. Fuchs., A sorting classification of parallel rendering. IEEE Computer Graphics and Applications, 14(4): 23-32, July 1994.
[26] B. Moloney, M. Ament, D. Weiskopf,and T. Möller. Sort-first parallel volume rendering. IEEE Transactions on Visualization and Computer Graphics, 17(8): 1164-1177, 2011.
[27] C. Müller, M. Strengert, and T. Ertl., Optimized volume raycasting for graphics-hardware-based cluster systems. In Proceedings of the Eurographics Symposium on Parallel Graphics and Visualization, pages 59-66, 2006.
[28] D. Nadeau, J. Genetti, S. Napear., B. Pailthorpe, C. Emmart., E. Wesselak, and D. Davidson, Visualizing stars and emission nebulas Computer Graphics Forum, 20(1): 27-33, 2001.
[29] F. Natterer and F. Wübbeling., The attenuated ray transform, chapter 2.4.1. Society for Industrial Mathematics, 2001.
[30] X. Pan, E. Sidky, and M. Vannier., Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Problems, 25(12): 123009, 2009.
[31] T. Peterka, D. Goodell, R. Ross., H.-W. Shen, and R. Thakur., A con-figurable algorithm for parallel image-compositing applications. In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC ‘09, pages 4:1-4:10, 2009.
[32] F. Sabbadin, M. Turatto, R. Ragazzoni., E. Cappellaro, and S. Benetti, The structure of planetary nebulae: theory vs. practice Astronomy and Astrophysics, 451(3): 937-949, 2006.
[33] E. Sidky and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization Physics in Medicine and Biology, 53: 4777, 2008.
[34] W. Steffen, N. Koning, S. Wenger., C. Morisset, and M. Magnor, Shape: A 3D modeling tool for astrophysics IEEE Transactions on Visualization and Computer Graphics, 17(4): 454-465, Apr. 2011.
[35] J. Tang,B. E. Nett,, and G.-H. Chen., Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms. Physics in Medicine and Biology, 54(19): 5781-5804, 2009.
[36] S. Wenger,J. Aja Fernández, C. Morisset, and M. Magnor, Algebraic 3D reconstruction of planetary nebulae Journal of WSCG, 17(1): 33-40, Feb. 2009.
[37] S. Xiao, Y. Bresler, and D. Munson Jr., Fast Feldkamp algorithm for cone-beam computer tomography. In Proceedings of the International Conference on Image Processing, 2, pages II-819, 2003.
[38] W. Zheng and C. O'Dell., A three-dimensional model of the Orion nebula. Astrophysical Journal, 438(2): 784-793, Jan. 1995.
35 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool