The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2012 vol.18)
pp: 2169-2177
M. Treib , Tech. Univ. Munchen, Munich, Germany
K. Burger , Tech. Univ. Munchen, Munich, Germany
F. Reichl , Tech. Univ. Munchen, Munich, Germany
C. Meneveau , Johns Hopkins Univ., Baltimore, MD, USA
A. Szalay , Johns Hopkins Univ., Baltimore, MD, USA
R. Westermann , Tech. Univ. Munchen, Munich, Germany
Despite the ongoing efforts in turbulence research, the universal properties of the turbulence small-scale structure and the relationships between small- and large-scale turbulent motions are not yet fully understood. The visually guided exploration of turbulence features, including the interactive selection and simultaneous visualization of multiple features, can further progress our understanding of turbulence. Accomplishing this task for flow fields in which the full turbulence spectrum is well resolved is challenging on desktop computers. This is due to the extreme resolution of such fields, requiring memory and bandwidth capacities going beyond what is currently available. To overcome these limitations, we present a GPU system for feature-based turbulence visualization that works on a compressed flow field representation. We use a wavelet-based compression scheme including run-length and entropy encoding, which can be decoded on the GPU and embedded into brick-based volume ray-casting. This enables a drastic reduction of the data to be streamed from disk to GPU memory. Our system derives turbulence properties directly from the velocity gradient tensor, and it either renders these properties in turn or generates and renders scalar feature volumes. The quality and efficiency of the system is demonstrated in the visualization of two unsteady turbulence simulations, each comprising a spatio-temporal resolution of 10244. On a desktop computer, the system can visualize each time step in 5 seconds, and it achieves about three times this rate for the visualization of a scalar feature volume.
turbulence, computational fluid dynamics, data visualisation, encoding, entropy, graphics processing units, ray tracing, spatio-temporal resolution, terascale on desktop PCs, turbulence small-scale structure, small-scale turbulent motions, large-scale turbulent motions, visually guided exploration, interactive selection, simultaneous visualization, desktop computers, memory capacities, bandwidth capacities, GPU system, feature-based turbulence visualization, compressed flow field representation, wavelet-based compression scheme, run-length, entropy encoding, brick-based volume ray-casting, GPU memory, turbulence properties, velocity gradient tensor, unsteady turbulence simulations, Data visualization, Graphics processing unit, Rendering (computer graphics), Tensile stress, Vectors, Memory management, Encoding, data compression, Visualization system and toolkit design, vector fields, volume rendering, data streaming
M. Treib, K. Burger, F. Reichl, C. Meneveau, A. Szalay, R. Westermann, "Turbulence Visualization at the Terascale on Desktop PCs", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2169-2177, Dec. 2012, doi:10.1109/TVCG.2012.274
[1] W. Ashurst, R. Kerstein, R. Kerr,, and C. Gibson., Alignment of vorticity and scalar gradient with the strain rate in simulated Navier-Stokes turbulence. Physics of Fluids, 30: 2343-2353, 1987. 4
[2] M. Burtscher and P. Ratanaworabhan, FPC: A high-speed compressor for double-precision floating-point data IEEE T. Computers, 58(1): 18-31, 2009. 2,5
[3] B. J, Cantwell. Exact solution of a restricted Euler equation for the velocity gradient tensor Physics of Fluids, A 4: 782-793, 1992. 4
[4] M. S. Chong,A. E. Perry,, and B. J. Cantwell., A general classification of three-dimensional flow fields Physics of Fluids, 2: 765-777, 1990. 4
[5] A. Cohen, I. Daubechies, and J. C, Feauveau. Biorthogonal bases of compactly supported wavelets Comm. Pure and Applied Mathematics, 45(5): 485-560, 1992. 3
[6] C. Crassin, F. Neyret, S. Lefebvre,, and E. Eisemann., GigaVoxels: Ray-guided streaming for efficient and detailed voxel rendering. In ACM SIGGRAPH Interactive 3D Graphics and Games (I3D), 2009. 2, 7
[7] D. Ellsworth, B. Green, and P. Moran., Interactive terascale particle visualization. In IEEE Visualization, pages 353-360, 2004. 2
[8] T. Fogal, H. Childs, S. Shankar,J. Krüger,R. D. Bergeron,, and P. Hatcher., Large data visualization on distributed memory multi-GPU clusters. In High Performance Graphics (HPG), pages 57-66, 2010. 2
[9] N. Fout, H. Akiba, K.-L. Ma,A. E. Lefohn,, and J. Kniss., High-quality rendering of compressed volume data formats. In EG/IEEE VGTC Visualization (EuroVis), pages 77-84, 2005. 3
[10] N. Fout, K.-L. Ma, and J. Ahrens., Time-varying, multivariate volume data reduction. In ACM Applied Computing, pages 1224-1230, 2005. 3
[11] J. E. Fowler and R. Yagel., Lossless compression of volume data. In Volume Visualization (WS), pages 43-50, 1994. 2
[12] R. Fraedrich, M. Bauer, and M. Stamminger., Sequential data compression of very large data in volume rendering. In Vision, Modeling and Visualization (VMV), pages 41-50, 2007. 2
[13] U. Frisch., Turbulence, the legacy of A. N. Kolmogorov. 1995. 4
[14] E. Gobbetti, F. Marton, and J. Iglesias Guitián., A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric datasets. The Visual Computer, 24(7-9): 797-806, 2008. 2, 7
[15] S. Guthe and W. Straßer., Real-time decompression and visualization of animated volume data. In IEEE Visualization, pages 349-356, 2001. 3, 6
[16] S. Guthe, M. Wand, J. Gonser,, and W. Straßer., Interactive rendering of large volume data sets. In IEEE Visualization, pages 53-60, 2002. 3, 5
[17] G. Haller, An objective definition of a vortex J. Fluid Mechanics, 525: 1-26, 2005. 4
[18] M. Howison,E. W. Bethel,, and H. Childs., MPI-hybrid parallelism for volume rendering on large, multi-core systems. In EG Parallel Graphics and Visualization (EGPGV), 2010. 2
[19] J. Hunt, A. Wray, and P. Moin, Eddies, streams, and convergence zones in turbulent flows Centrefor Turbulence Research, CTR-S88, 1988. 4
[20] T. Ishihara, T. Gotoh, and Y. Kaneda, Study of high-Reynolds number isotropic turbulence by direct numerical simulation Annu. Rev. Fluid Mechanics, 41: 165-180, 2009. 1
[21] J. Jeong and F. Hussain, On the identification of a vortex J. Fluid Mechanics, 285: 69-94, 1995. 4
[22] J. Katz and J. Sheng, Applications of holography in fluid mechanics and particle dynamics Annu. Rev. Fluid Mechanics, 42: 531-555, 2010. 1
[23] M. Kraus., Scale-invariant volume rendering. In IEEE Visualization, pages 295-302, 2005. 3
[24] J. Krüger and R. Westermann., Acceleration techniques for GPU-based volume rendering. In IEEE Visualization, pages 287-292, 2003. 3
[25] S. Lakshminarasimhan, N. Shah, S. Ethier., S. Klasky, R. Latham., R. Ross, and N. Samatova., Compressing the incompressible with ISA-BELA: In-situ reduction of spatio-temporal data. In Parallel and Distributed Computing (Euro-Par), pages 366-379, 2011. 3
[26] Y. Li, E. Perlman, M. Wan., Y. Yang, C. Meneveau., R. Burns, S. Chen., A. Szalay, and G. Eyink, A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence J. Turbulence, 9:N31, 2008. 2
[27] P. Lindstrom and M. Isenburg., Fast and efficient compression of floating-point data. IEEE T. Visualization and Computer Graphics (Proc. Visualization), 12(5): 1245-1250, 2006. 2, 5
[28] E. Lum, K.-L. Ma, and J. Clyne., Texture hardware assisted rendering of time-varying volume data. In IEEE Visualization, pages 263-270, 2001. 3
[29] J. Martin, A. Ooi, M. S. Chong,, and J. Soria., Dynamics of the velocity gradient tensor invariants in isotropic turbulence. Physics of Fluids, 10: 2336-2346, 1998. 4
[30] B. Moloney, M. Ament, D. Weiskopf,, and T. Möller., Sort-first parallel volume rendering. IEEE T. Visualization and Computer Graphics, 17(8): 1164-1177, 2011. 2
[31] D. Nagayasu, F. Ino, and K. Hagihara., Two-stage compression for fast volume rendering of time-varying scalar data. In Computer Graphics and Interactive Techniques (GRAPHITE), pages 275-284, 2006. 2
[32] D. Nagayasu, F. Ino, and K. Hagihara, A decompression pipeline for accelerating out-of-core volume rendering of time-varying data Computers & Graphics, 32(3): 350-362, 2008. 2
[33] K. G. Nguyen and D. Saupe., Rapid high quality compression of volume data for visualization Computer Graphics Forum, 20(3): 49-57, 2001. 3, 5
[34] K. Sayood., Introduction to Data Compression. 3rd edition, 2005. 2, 5
[35] J. Schneider and R. Westermann., Compression domain volume rendering. In IEEE Visualization, pages 293 -300, 2003. 3
[36] C. Sigg and M. Hadwiger., Fast third-order texture filtering. In GPU Gems 2, pages 313-329. 2005. 3
[37] K. Sreenivasan and R. Antonia, The phenomenology of small-scale turbulence Annu. Rev. Fluid Mechanics, 29: 435-472, 1997. 4
[38] D. S. Taubman and M. W. Marcellin, IPEG 2000: Image Compression Fundamentals, Standards and Practice. 2001. 5
[39] M. Treib, F. Reichl, S. Auer,, and R. Westermann., Interactive editing of gigasample terrain fields. Computer Graphics Forum (Proc. Eurographics), 31(2): 383-392, 2012. 3,5,8
[40] W. J. van der Laan,A. C. Jalba,, and J. B. T. M. Roerdink., Accelerating wavelet lifting on graphics hardware using CUDA IEEE T. Parallel and Distributed Systems, 22(1): 132-146, 2011. 3
[41] J. S, Vitter. External memory algorithms and data structures: Dealing with massive data ACM Computing Surveys, 33(2): 209-271, 2001. 2
[42] J. Wallace and P. Vukoslavcevic, Measurement of the velocity gradient tensor in turbulent flows Annu. Rev. Fluid Mechanics, 42: 157-181, 2010. 1
[43] R. Westermann., A multiresolution framework for volume rendering. In Volume Visualization (WS), pages 51-58, 1994. 3,5
[44] J. Woodring, S. Mniszewski, C. Brislawn., D. DeMarle, and J. Ahrens., Revisiting wavelet compression for large-scale climate data using JPEG 2000 and ensuring data precision. In IEEE Large-Scale Data Analysis and Visualization (LDAV), pages 31-38, 2011. 3
[45] B.-L. Yeo and B. Liu, Volume rendering of DCT-based compressed 3D scalar data IEEE T. Visualization and Computer Graphics, 1(1): 29-43, 1995. 3,5
38 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool