The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2012 vol.18)
pp: 2159-2168
B. Schindler , ETH Zurich, Zurich, Switzerland
R. Fuchs , ETH Zurich, Zurich, Switzerland
S. Barp , Air Flow Consulting AG Zurich, Zurich, Switzerland
J. Waser , VRVis Vienna, Vienna, Austria
A. Pobitzer , Univ. of Bergen, Bergen, Norway
R. Carnecky , ETH Zurich, Zurich, Switzerland
K. Matkovic , VRVis Vienna, Vienna, Austria
R. Peikert , ETH Zurich, Zurich, Switzerland
ABSTRACT
Room air flow and air exchange are important aspects for the design of energy-efficient buildings. As a result, simulations are increasingly used prior to construction to achieve an energy-efficient design. We present a visual analysis of air flow generated at building entrances, which uses a combination of revolving doors and air curtains. The resulting flow pattern is challenging because of two interacting flow patterns: On the one hand, the revolving door acts as a pump, on the other hand, the air curtain creates a layer of uniformly moving warm air between the interior of the building and the revolving door. Lagrangian coherent structures (LCS), which by definition are flow barriers, are the method of choice for visualizing the separation and recirculation behavior of warm and cold air flow. The extraction of LCS is based on the finite-time Lyapunov exponent (FTLE) and makes use of a ridge definition which is consistent with the concept of weak LCS. Both FTLE computation and ridge extraction are done in a robust and efficient way by making use of the fast Fourier transform for computing scale-space derivatives.
INDEX TERMS
structural engineering computing, building management systems, computational fluid dynamics, data visualisation, design engineering, doors, fast Fourier transforms, HVAC, computational fluid dynamics, Lagrangian coherent structures, design analysis, revolving doors, room air flow, air exchange, energy-efficient buildings, energy-efficient design, air flow visual analysis, building entrances, air curtains, building interior, LCS, flow barriers, recirculation behavior, finite-time Lyapunov exponent, FTLE computation, ridge definition, fast Fourier transform, scale-space derivatives, Flow control, Atmospheric modeling, Tensile stress, Lyapunov methods, Energy efficiency, Meteorology, Heating, vector field data, Visualization in physical sciences and engineering, topology-based techniques
CITATION
B. Schindler, R. Fuchs, S. Barp, J. Waser, A. Pobitzer, R. Carnecky, K. Matkovic, R. Peikert, "Lagrangian Coherent Structures for Design Analysis of Revolving Doors", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2159-2168, Dec. 2012, doi:10.1109/TVCG.2012.243
REFERENCES
[1] ANSYS, Inc. ANSYS CFX, Release 12.1. http://www.ansys.com, 2009.
[2] S. Barp, Wenn Luftströme zum Problem werden Haustech Extra, 234(3): 51-52, 2010.
[3] A. Beardmore., The revolving door since 1881: Architecture in detail. Boon Edam, 2000.
[4] R. Carnecky, B. Schindler, R. Fuchs,, and R. Peikert., Multi-layer illustrative dense flow visualization. Computer Graphics Forum, 31(3): 895-904, 2012.
[5] M. Cehlin., Visualization of Air Flow, Temperature and Concentration Indoors: Whole-field measuring methods and CFD. PhD Dissertation, KTH Stockholm, 2006.
[6] B. Cullum, O. Lee, S. Sukkasi,, and D. Wesolowski., Modifying Habits Towards Sustainability: A Study of Revolving Door Usage on the MIT Campus. Technical report, MIT, 2006.
[7] J. P. den Hartog, Designing Indoor Climate: A Thesis on the Integration of Indoor Climate Analysis in Architectural Design. PhD thesis, TU Delft, 2003.
[8] D. Eberly., Ridges in Image and Data Analysis. Kluwer Acadamic Publishers, 1996.
[9] J. D. Furst and S. M. Pizer., Marching Ridges. In Proceedings of the IASTED International Conference on Signal and Image Processing, pages 22-26, 2001.
[10] C. Garth, F. Gerhardt, X. Tricoche,, and H. Hagen., Efficient Computation and Visualization of Coherent Structures in Fluid Flow Applications. Transactions on Visualization and Computer Graphics, 13(6): 1464-1471, 2007.
[11] C. Garth and K. Joy, Fast, Memory-Efficient Cell Location in Unstructured Grids for Visualization Transactions on Visualization and Computer Graphics, 16(6): 1541-1550, 2010.
[12] C. Garth, G.-S. Li, X. Tricoche,C. D. Hansen,, and H. Hagen., Visualization of Coherent Structures in Transient 2D Flows. In Topology-Based Methods in Visualization II, pages 1-13, 2009.
[13] C. Garth, A. Wiebel, X. Tricoche,K. I. Joy,, and G. Scheuermann., Lagrangian Visualization of Flow-Embedded Surface Structures. Computer Graphics Forum, 27(3): 1007-1014, 2008.
[14] M. A. Green,C. W. Rowley,, and G. Haller., Detection of Lagrangian coherent structures in three-dimensional turbulence. Journal of Fluid Mechanics, 572: 111-120, 2007.
[15] G. Haller, Distinguished Material Surfaces and Coherent Structures in Three-Dimensional Fluid Flows Phvsica D, 149(4): 248-277, 2001.
[16] G. Haller, A Variational Theory of Hyperbolic Lagrangian Coherent Structures Physica D, 240(7): 574-598, 2010.
[17] E. Johnston and A. Rosenfeld, Digital detection of pits, peaks, ridges, and ravines IEEE Transactions on Systems, Man, and Cybernetics, 5(6): 472-480, 1975.
[18] S. Kenjeres,S. B. Gunarjo,, and K. Hanjalic., Visualization of air flow and smoke spreading for realistic indoor-climate situations. Journal of Visualization, 7(4): 268, 2004.
[19] F. Lekien,S. C. Shadden,, and J. E. Marsden., Lagrangian coherent structures in n-dimensional systems. Journal of Mathematical Physics, 48(6):065404. 1-19, 2007.
[20] T. Lindeberg, Edge detection and ridge detection with automatic scale selection International Journal of Computer Vision, 30(2): 117-154, 1998.
[21] D. Lipinski and K. Mohseni, A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures Chaos, 20(1):017504. 1-9, 2010.
[22] W. E. Lorensen and H. E. Cline., Marching cubes: A high resolution 3D surface construction algorithm Computer Graphics, 21(4): 163-169, 1987.
[23] M. Mathur, G. Haller, T. Peacock,J. E. Ruppert-Felsot,, and H. L. Swinney., Uncovering the Lagrangian Skeleton of Turbulence. Physical Review Letters, 98(14):144502. 1-13, 2007.
[24] NVIDIA. CUDA Compute Unified Device Architecture. http://developer.nvidia.com/objectgpucomputing.html (last visited Mar.20, 2012).
[25] R. Peikert and F. Sadlo., Height Ridge Computation and Filtering for Visualization. In Proceedings of Pacific Vis 2008, pages 119-126, 2008.
[26] A. Pobitzer, R. Peikert, R. Fuchs., B. Schindler, A. Kuhn., H. Theisel, K. Marković,, and H. Hauser., The State of the Art in Topology-Based Visualization of Unsteady Flow. Computer Graphics Forum, 30(6): 1789-1811, 2011.
[27] F. Reinders, F. Post, and H. Spoelder., Attribute-based Feature Tracking. In Data Visualization 1999, pages 63-72, 1999.
[28] F. Sadlo and R. Peikert, Efficient Visualization of Lagrangian Coherent Structures by Filtered AMR Ridge Extraction Transactions on Visualization and Computer Graphics, 13(6): 1456-1463, 2007.
[29] F. Sadlo, A. Rigazzi, and R. Peikert., Time-Dependent Visualization of Lagrangian Coherent Structures by Grid Advection. In Topological Data Analysis and Visualization, pages 151-165, 2011.
[30] J. Sahner, T. Weinkauf, N. Teuber,, and H.-C. Hege., Vortex and Strain Skeletons in Eulerian and Lagrangian Frames. Transactions on Visualization and Computer Graphics, 13(5): 980-990, 2007.
[31] A. Schälin and J. Martinek., Luftschleiersysteme für Gebäudeeingänge, Technical Report BK_1999–08-01, AFC Bauklimatik, AFC Air Flow Consulting, Zürich, 1999.
[32] B. Schindler, R. Peikert, R. Fuchs,, and H. Theisel., Ridge Concepts for the Visualization of Lagrangian Coherent Structures. In R. Peikert, H. Hauser, H. Carr,, and R. Fuchs,editors, Topological Methods in Data Analysis and Visualization II, pages 221-236. Springer, 2012.
[33] S. Shadden, F. Lekien, and J. Marsden, Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows Physica D, 212: 271-304, 2005.
[34] S. C. Shadden,J. O. Dabiri,, and J. E. Marsden., Lagrangian analysis of fluid transport in empirical vortex ring flows Physics of Fluids, 18(4):047105. 1-11, 2006.
[35] O. Staubli, C. Sigg, R. Peikert., M. Gross, and D. Gubler., Volume rendering of smoke propagation CFD data. In Proceedings IEEE Visualization 2005, pages 335-342, 2005.
[36] W. Tang,P. W. Chan,, and G. Haller., Accurate extraction of Lagrangian coherent structures over finite domains with application to flight data analysis over Hong Kong International Airport. Chaos, 20(1):017502, 1-8, 2010.
[37] W. Tang, M. Mathur, G. Haller,D. C. Hahn,, and F. H. Ruggiero., Lagrangian Coherent Structures near a Subtropical Jet Stream. Journal of the Atmospheric Sciences, 67: 2307-2319, 2010.
[38] J. Waser, R. Fuchs, H. Ribicic., B. Schindler, G. Blöschl,, and E. Gröller,World Lines. Transactions on Visualization and Computer Graphics, 16(6): 1458-1467, 2010.
47 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool