The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2012 vol.18)
pp: 2149-2158
Harald Obermaier , University of California, Davis
Kenneth I. Joy , University of California, Davis
Integral flow surfaces constitute a widely used flow visualization tool due to their capability to convey important flow information such as fluid transport, mixing, and domain segmentation. Current flow surface rendering techniques limit their expressiveness, however, by focusing virtually exclusively on displacement visualization, visually neglecting the more complex notion of deformation such as shearing and stretching that is central to the field of continuum mechanics. To incorporate this information into the flow surface visualization and analysis process, we derive a metric tensor field that encodes local surface deformations as induced by the velocity gradient of the underlying flow field. We demonstrate how properties of the resulting metric tensor field are capable of enhancing present surface visualization and generation methods and develop novel surface querying, sampling, and visualization techniques. The provided results show how this step towards unifying classic flow visualization and more advanced concepts from continuum mechanics enables more detailed and improved flow analysis.
Tensile stress, Surface treatment, Velocity measurement, Shape analysis, Trajectory, Deformation, continuum mechanics, Vector field, integral surfaces, metric tensor, deformation, velocity gradient
Harald Obermaier, Kenneth I. Joy, "Derived Metric Tensors for Flow Surface Visualization", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2149-2158, Dec. 2012, doi:10.1109/TVCG.2012.211
[1] P. Alliez,D. Cohen-Steiner, O. Devillers, B. Levy,, and M. Desbrun., Anisotropic polygonal remeshing. ACM Trans. Graph., 22(3): 485-493, July 2003.
[2] J. L, Bentley. Multidimensional binary search trees used for associative searchins Commun. ACM. 18(9): 509-517, Sept. 1975.
[3] S. Born, A. Wiebel, J. Friedrich., G. Scheuermann, and D. Bartz, Illustrative stream surfaces Visualization and Computer Graphics, IEEE Transactions on. 16(6): 1329-133R_ nov.-dec. 2010.
[4] K. Burger, F. Ferstl, H. Theisel,, and R. Westermann., Interactive streak surface visualization on the gpu. Visualization and Computer Graphics, IEEE Transactionson, 15(6): 1259-1266, nov.-dec. 2009.
[5] J. R. Cash and A. H. Karp., A variable order runge-kutta method for initial value problems with rapidly varying right-hand sides ACM Trans. Math. Softw., 16: 201-222, 1990.
[6] G. Chen, D. Palke, Z. Lin., H. Yeh, P. Vincent., R. Laramee, and E. Zhang, Asymmetric tensor field visualization for surfaces Visualization and Computer Graphics, IEEE Transactionson, 17(12): 1979-1988, dec. 2011.
[7] T. Delmarcelle and L. Hesselink, Visualizing second-order tensor fields with hyperstreamlines Computer Graphics and Applications, IEEE, 13(4): 25-33, july 1993.
[8] R. R. Dickinson., A unified approach to the design of visualization soft-ware for the analysis of field problems Three-Dimensional Visualization and Display Techniques, 1083: 173-180, 1989.
[9] L. Feng, I. Hotz, B. Hamann,, and K. Joy., Anisotropic noise samples. Visualization and Computer Graphics, IEEE Transactions on, 14(2): 342-354, march-april 2008.
[10] C. Garth, F. Gerhardt, X. Tricoche,, and H. Hagen., Efficient computation and visualization of coherent structures in fluid flow applications. Visualization and Computer Graphics, IEEE Transactionson, 13(6): 1464-1471, nov.-dec. 2007.
[11] C. Garth, H. Krishnan, X. Tricoche., T. Bobach, and K. I, Joy. Generation of accurate integral surfaces in time-dependent vector fields IEEE Transactions on Visualization and Computer Graphics, 14: 1404-1411, 2008.
[12] C. Garth, A. Wiebel, X. Tricoche,K. I. Joy,, and G. Scheuermann., Lagrangian visualization of flow-embedded surface structures. Comput. Graph. Forum, 27(3): 1007-1014, 2008.
[13] G. Haller., Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos, 10: 99-108, 2000.
[14] G. Haller, Distinguished material surfaces and coherent structures in three-dimensional fluid flows Physica D: Nonlinear Phenomena, 149(4): 248-277, 2001.
[15] M. Hlawitschka, G. Scheuermann, and B. Hamann., Interactive glyph placement for tensor fields. In Proceedings of the 3rd international conference on Advances in visual computing - Volume Part I, ISVC’07, pages 331-340, Berlin, Heidelberg, 2007. Springer-Verlag.
[16] I. Hotz, L. Feng, H. Hagen., B. Hamann, K. Joy,, and B. Jeremic., Physi-cally based methods for tensor field visualization. In Proceedings of the conference on Visualization‘04, VIS ‘04, pages 123-130, Washington, DC, USA, 2004. IEEE Computer Society.
[17] J. P., M. Hultquist. Constructing stream surfaces in steady 3d vector fields. In Proceedings of the 3rd conference on Visualization‘ 92, VIS ‘92, pages 171-178, 1992.
[18] M. Hummel, C. Garth, B. Hamann., H. Hagen, and K. I, Joy. Iris: Illustrative rendering for integral surfaces IEEE Transactions on Visualization and Computer Graphics, 16(6): 1319-1328, Nov. 2010.
[19] G. Kindlmann and C.-F. Westin, Diffusion tensor visualization with glyph packing IEEE Transactions on Visualization and Computer Graphics, 12(5): 1329-1336, Sept. 2006.
[20] H. Krishnan, C. Garth, and K. Joy, Time and streak surfaces for flow visualization in large time-varying data sets IEEE Transactions on Visualization and Computer Graphics, 15(6): 1267-1274, Nov. 2009.
[21] H. Lo and X. Wang, Generation of anisotropic mesh by ellipse packing over an unbounded domain Eng. with Comput., 20(4): 372-383, Aug. 2005.
[22] T. McLouglin,R. S. Laramee, R. Peikert, F. H. Post,, and M. Chen., Over two decades of integration-based geometric flow visualization. Computer Graphics Forum, 29(6): 1807-1829, 2010.
[23] H. Obermaier,M. Hering-Bertram, J. Kuhnert, and H. Hagen, Volume deformations in grid-less flow simulations Computer Graphics Forum, 28: 879-886, 2009.
[24] T. Ropinski, S. Oeltze, and B. Preim, Visual computing in biology and medicine: Survey of glyph-based visualization techniques for spatial multivariate medical data Comput. Graph: 35(2): 392-401, Apr. 2011.
[25] F. Sadlo and R. Peikert, Efficient visualization of lagrangian coherent structures by filtered AMR ridge extraction IEEE Trans. Vis. Comput. Graph., 13(6): 1456-1463, 2007.
[26] K.-F. Tchon, J. Dompierre, M.-G. Vallet, F. Guibault, and R. Camarero, Two-dimensional metric tensor visualization using pseudo-meshes Engineering with Computers, 22: 121-131, 2006.
[27] G. Turk and D. Banks., Image-guided streamline placement. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, SIGGRAPH ‘96, pages 453-460, New York, NY, USA, 1996. ACM.
[28] W. von Funck, T. Weinkauf, H. Theisel,, and H.-P. Seidel., Smoke surfaces: An interactive flow visualization technique inspired by real-world flow experiments. Visualization and Computer Graphics, IEEE Transactions on. 14(6): 1396-1403. nov.-dec. 2008.
[29] E. Zhang, H. Yeh, Z. Lin,, and R. Laramee., Asymmetric tensor analysis for flow visualization. Visualization and Computer Graphics, IEEE Transactions on, 15(1): 106-122, jan.-feb. 2009.
19 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool