This Article 
 Bibliographic References 
 Add to: 
Evaluation of Multivariate Visualization on a Multivariate Task
Dec. 2012 (vol. 18 no. 12)
pp. 2114-2121
Multivariate visualization techniques have attracted great interest as the dimensionality of data sets grows. One premise of such techniques is that simultaneous visual representation of multiple variables will enable the data analyst to detect patterns amongst multiple variables. Such insights could lead to development of new techniques for rigorous (numerical) analysis of complex relationships hidden within the data. Two natural questions arise from this premise: Which multivariate visualization techniques are the most effective for high-dimensional data sets? How does the analysis task change this utility ranking? We present a user study with a new task to answer the first question. We provide some insights to the second question based on the results of our study and results available in the literature. Our task led to significant differences in error, response time, and subjective workload ratings amongst four visualization techniques. We implemented three integrated techniques (Data-driven Spots, Oriented Slivers, and Attribute Blocks), as well as a baseline case of separate grayscale images. The baseline case fared poorly on all three measures, whereas Datadriven Spots yielded the best accuracy and was among the best in response time. These results differ from comparisons of similar techniques with other tasks, and we review all the techniques, tasks, and results (from our work and previous work) to understand the reasons for this discrepancy.
Index Terms:
data visualisation,data analysis,rigorous analysis,multivariate visualization evaluation,multivariate task,data sets dimensionality,visual representation,multiple variables,data analyst,numerical analysis,high-dimensional data sets,utility ranking,response time,subjective workload ratings,integrated techniques,data-driven spots,oriented slivers,attribute blocks,baseline case,grayscale images,Data visualization,Time factors,Image color analysis,Analysis of variance,Shape analysis,Gray-scale,Quantitative evaluation,texture perception,Quantitative evaluation,multivariate visualization,visual task design
M. A. Livingston, J. W. Decker, Zhuming Ai, "Evaluation of Multivariate Visualization on a Multivariate Task," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 12, pp. 2114-2121, Dec. 2012, doi:10.1109/TVCG.2012.223
Usage of this product signifies your acceptance of the Terms of Use.