The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2012 vol.18)
pp: 2095-2103
We evaluate and compare video visualization techniques based on fast-forward. A controlled laboratory user study (n = 24) was conducted to determine the trade-off between support of object identification and motion perception, two properties that have to be considered when choosing a particular fast-forward visualization. We compare four different visualizations: two representing the state-of-the-art and two new variants of visualization introduced in this paper. The two state-of-the-art methods we consider are frame-skipping and temporal blending of successive frames. Our object trail visualization leverages a combination of frame-skipping and temporal blending, whereas predictive trajectory visualization supports motion perception by augmenting the video frames with an arrow that indicates the future object trajectory. Our hypothesis was that each of the state-of-the-art methods satisfies just one of the goals: support of object identification or motion perception. Thus, they represent both ends of the visualization design. The key findings of the evaluation are that object trail visualization supports object identification, whereas predictive trajectory visualization is most useful for motion perception. However, frame-skipping surprisingly exhibits reasonable performance for both tasks. Furthermore, we evaluate the subjective performance of three different playback speed visualizations for adaptive fast-forward, a subdomain of video fast-forward.
video signal processing, data visualisation, image motion analysis, adaptive fast-forward, fast-forward video visualization evaluation, object identification, motion perception, frame-skipping, successive frames temporal blending, object trail visualization, predictive trajectory visualization, video frames, object trajectory, playback speed visualizations, Visualization, Image color analysis, Trajectory, Data visualization, Rendering (computer graphics), Acceleration, Video recording, controlled laboratory user study, Video visualization, adaptive fast-forward
M. Hoferlin, K. Kurzhals, B. Hoferlin, G. Heidemann, D. Weiskopf, "Evaluation of Fast-Forward Video Visualization", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2095-2103, Dec. 2012, doi:10.1109/TVCG.2012.222
[1] The R Project for Statistical Computing. http.z/, 2012.
[2] W. Aigner, S. Miksch, H. Schumann,, and C. Tominski., Visualization of Time-Oriented Data. Springer-Verlag, New York, 2011.
[3] H. Barlow, Temporal and spatial summation in human vision at different background intensities The Journal of Physiology, 141(2): 337-34, 1958.
[4] P. Baudisch, E. Cutrell, and G. Robertson., High-density cursor: A visualization technique that helps users keep track of fast-moving mouse cursors. In Proceedings of Interact 2003, pages 236-243, 2003.
[5] R. Borgo, M. Chen, E. Grundy, B. Daubney, G. Heidemann, B. Hoferlin, M. Hoferlin, H. Janicke, D. Weiskopf,, and X. Xie., A survey on video-based graphics and video visualization. In Eurographics 2011 — State of the Art Reports, pages 1-23, 2011.
[6] D. Borland and R. Taylor, II. Rainbow color map (still) considered harm-ful. IEEE Computer Graphics and Applications, pages 14-17, 2007.
[7] R. P. Botchen, S. Bachthaler, F. Schick, M. Chen, G. Mori, D. Weiskopf, and T. Ertl., Action-based multifield video visualization IEEE Transactions on Visualization and Computer Graphics, 14(4): 885-899, 2008.
[8] D. Burr and M. Morgan, Motion deblurring in human vision Proceedings of the Royal Society of London. Series B: Biological Sciences, 264(1380): 431-436, 1997.
[9] Y. Caspi, A. Axelrod, Y. Matsushita,, and A. Gamliel., Dynamic stills and clip trailers. The Visual Computer, 22(9): 642-34, 2006.
[10] G.-C. Chao, Y.-P. Tsai, and S.-K. Jeng, Augmented keyframe Journal of Visual Communication and Image Representation, 21(7): 682-34, 2010.
[11] M. Chen, R. Botchen, R. Hashim, D. Weiskopf, T. Ertl,, and 1. Thornton., Visual signatures in video visualization. IEEE Transactions on Visualization and Computer Graphics, 12(5): 1093-1100, 2006.
[12] K. Cheng, S. Luo, B. Chen,, and H. Chu., Smartplayer: user-centric video fast-forwarding. In Proceedings of the 27th International Conference on Human Factors in Computing Systems, pages 789-798, 2009.
[13] N. Chinchor,J. J. Thomas,P. C. Wong,M. G. Christel,, and W. Ribarsky., Multimedia analysis + visual analytics = multimedia analytics. IEEE Computer Graphics and Applications, 30(5): 52-34, 2010.
[14] W. S. Geisler., Motion streaks provide a spatial code for motion direction Nature, 400(6739): 65-34, 1999.
[15] J. Giesen, K. Mueller, E. Schuberth, L. Wang, and P. Zolliker, Conjoint analysis to measure the perceived quality in volume rendering IEEE Transactions on Visualization and Computer Graphics, 13(6): 1664-1671, 2007.
[16] D. B. Goldman, B. Curless, D. Salesin,, and S. M., Seitz. Schematic storyboarding for video visualization and editing ACM Transactions on Graphics, 25(3): 862-34, 2006.
[17] C. Graham and R. Margaria, Area and the intensity-time relation in the peripheral retina American Journal of Physiology, 113(2): 299-34, 1935.
[18] D. Green, Regional variations in the visual acuity for interference fringes on the retina The Journal of Physiology, 207(2): 351-34, 1970.
[19] J. Heer and G. Robertson, Animated transitions in statistical data graphics IEEE Transactions on Visualization and Computer Graphics, 13(6): 1240-1247, 2007.
[20] B. Hoferlin, M. Hoferlin, D. Weiskopf,, and G. Heidemann., Information-based adaptive fast-forward for visual surveillance. Multimedia Tools and Applications, 55(1): 127-150, 2011.
[21] B. Hoferlin, H. Pfluger, M. Hoferlin, G. Heidemann, and D. Weiskopf., Learning a visual attention model for adaptive fast-forward in video surveillance. In Proceedings of the International Conference on Pattern Recognition Applications and Methods, 2, pages 25-32, 2012.
[22] D. Keirn, F. Mansmann, J. Schneidewind, J. Thomas, and H. Ziegler., Visual analytics: Scope and challenges. In Visual Data Mining, 4404 of Lecture Notes in Computer Science, pages 76-90. Springer, 2008.
[23] M. G. Kendall, Rank Correlation Methods. Charles Griffin and Company, Oxford, 1962.
[24] H. Keval and M. A. Sasse., To catch a thief — you need at least 8 frames per second: The impact of frame rates on user performance in a CCTV detection task. In Proceedings of the ACM International Conference on Multimedia, pages 941-944, 2008.
[25] H. Lam, E. Bertini, P. Isenberg, C. Plaisant, and S. Carpendale, Empirical studies in information visualization: Seven scenarios IEEE Transactions on Visualization and Computer Graphics, 18(9): 1520-1536, 2012.
[26] F. Navarro,F. J. Sern,, and D. Gutierrez., Motion blur rendering: State of the art. Computer Graphics Forum, 30(1): 3-26, 2011.
[27] K. Peker and A. Divakaran., Adaptive fast playback-based video skim-ming using a compressed-domain visual complexity measure. In Proceedings of the IEEE International Conference on Multimedia and Expo, 3, pages 2055-2058, 2004.
[28] N. Petrovic, N. Jojic, and T. Huang, Adaptive video fast forward Multimedia Tools and Applications, 26(3): 327-34, 2005.
[29] M. Piccardi., Background subtraction techniques: a review. In Proceedings of the IEEE International Conference on Systems, Man and Cyber-netics, 4, pages 3099-3104, 2004.
[30] P. Pirolli and S. Card., The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In Proceedings of International Conference on Intelligence Analysis, 2005.
[31] G. Robertson, R. Fernandez, D. Fisher, B. Lee, and J. Stasko, Effectiveness of animation in trend visualization IEEE Transactions on Visualization and Computer Graphics, 14(6): 1325-1332, 2008.
[32] K. Scott-Brown and P. Cronin., An instinct for detection: Psychological perspectives on CCTV surveillance. The Police Journal, 80(4): 287-34, 2007.
[33] B. Shneiderman., The eyes have it: a task by data type taxonomy for information visualizations. In Proceedings of IEEE Symposium on Visual Languages, pages 336-343, 1996.
[34] L. Teodosio and W. Bender., Salient video stills: content and context preserved. In Proceedings of the First ACM International Conference on Multimedia, pages 39-46, 1993.
[35] C. Ware., Information Visualization: Perception for Design. Morgan Kaufmann Publishers Inc., San Francisco, 2nd edition, 2004.
[36] D. Weiskopf and G. Erlebacher., The Visualization Handbook, chapter Overview of flow visualization, pages 261–278. Elsevier, Amsterdam, 2005.
[37] M. Wolter, I. Assenmacher, B. Hentschel, M. Schirski, and T. Kuhlen, A time model for time-varying visualization Computer Graphics Forum, 28(6): 1561-1571, 2009.
[38] A. Yilmaz, O. Javed, and M. Shah, Object tracking: A survey ACM Computing Surveys (CSUR), 38(4): 1-45, 2006.
16 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool