The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2012 vol.18)
pp: 2078-2087
ABSTRACT
In the last decades cosmological N-body dark matter simulations have enabled ab initio studies of the formation of structure in the Universe. Gravity amplified small density fluctuations generated shortly after the Big Bang, leading to the formation of galaxies in the cosmic web. These calculations have led to a growing demand for methods to analyze time-dependent particle based simulations. Rendering methods for such N-body simulation data usually employ some kind of splatting approach via point based rendering primitives and approximate the spatial distributions of physical quantities using kernel interpolation techniques, common in SPH (Smoothed Particle Hydrodynamics)-codes. This paper proposes three GPU-assisted rendering approaches, based on a new, more accurate method to compute the physical densities of dark matter simulation data. It uses full phase-space information to generate a tetrahedral tessellation of the computational domain, with mesh vertices defined by the simulation's dark matter particle positions. Over time the mesh is deformed by gravitational forces, causing the tetrahedral cells to warp and overlap. The new methods are well suited to visualize the cosmic web. In particular they preserve caustics, regions of high density that emerge, when several streams of dark matter particles share the same location in space, indicating the formation of structures like sheets, filaments and halos. We demonstrate the superior image quality of the new approaches in a comparison with three standard rendering techniques for N-body simulation data.
INDEX TERMS
rendering (computer graphics), ab initio calculations, cosmology, dark matter, data visualisation, gravity, interpolation, N-body problems, N-body simulations (astronomical), image quality, dark matter simulation visualization, cosmological N-body dark matter simulation, ab initio studies, structuere formation, Universe, gravity, density fluctuation, big bang, galaxy formation, cosmic web, time-dependent particle based simulation, N-body simulation data, splatting approach, point based rendering, spatial distribution, physical quantities, kernel interpolation, SPH-code, smoothed particle hydrodynamics-code, GPU-assisted rendering, phase-space information, tetrahedral tessellation, mesh vertices, dark matter particle position, gravitational force, tetrahedral cells, Computational modeling, Rendering (computer graphics), Graphics processing unit, Equations, Data models, Mathematical model, tetrahedral grids, Astrophysics, dark matter, n-body simulations
CITATION
R. Kaehler, O. Hahn, T. Abel, "A Novel Approach to Visualizing Dark Matter Simulations", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2078-2087, Dec. 2012, doi:10.1109/TVCG.2012.187
REFERENCES
[1] K. Abazajian, Z. Zheng, I. Zehavi,D. H. Weinberg,J. A. Frieman,A. A. Berlind,M. R. Blanton,N. A. Bahcall, J. Brinkmann, D. P. Schneider,, and M. Tegmark., Cosmology and the Halo Occupation Distribution from Small-Scale Galaxy Clustering in the Sloan Digital Sky Survey. apj, 625: 613-620, June 2005.
[2] T. Abel,O. Hahn,, and R. Kaehler., Tracing the Dark Matter Sheet in Phase Space. arXiv, 1111.3944v2, Nov. 2011.
[3] F. Bernardeau and R. van de Weygaert., A New Method for Accurate Estimation of Velocity Field Statistics. MNRAS, 279:693, Mar. 1996.
[4] M. Boylan-Kolchin, V. Springel, S. D. M. White, A. Jenkins, and G. Lemson, Resolving cosmic structure formation with the Millennium-II Simulation mnras, 398: 1150-1164, Sept. 2009.
[5] D. Cha, S. Son, and I. Ihm, GPU-Assisted High Quality Particle Rendering Comput. Graph. Forum, 28(4): 1247-34, 2009.
[6] G. Efstathiou, M. Davis, S. D. M. White,, and C. S. Frenk., Numerical techniques for large cosmological N-body simulations. apjs, 57: 241-260, Feb. 1985.
[7] R. Espinha and W. Celes., High-Quality Hardware-Based Ray-Casting Volume Rendering Using Partial Pre-Integration. In Proceedings of the XVIII Brazilian Symposium on Computer Graphics and Image Processing, pages 273-, Washington, DC, USA, 2005. IEEE Computer Society.
[8] R. Fraedrich, S. Auer, and R. Westermann, Efficient High-Quality Volume Rendering of SPH Data IEEE Transactions on Visualization and Computer Graphics, 16: 1533-1540, November 2010.
[9] R. Fraedrich, J. Schneider, and R. Westermann, Exploring the Millennium Run - Scalable Rendering of Large-Scale Cosmological Datasets IEEE Transactions on Visualization and Computer Graphics, 15: 1251-1258, November 2009.
[10] S. Haroz, K.-L. Ma, and K. Heitmann., Multiple uncertainties in time-variant cosmological particle data. In Proceedings of IEEE Pacific Visualization Symposium, pages 207-214. IEEE VGTC, March 2008.
[11] S. Hilbert, J. Hartlap, S. D. M. White,, and P. Schneider., Ray-tracing through the Millennium Simulation: Born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing. A&A, 499: 31-43, May 2009.
[12] M. Hopf and T. Ertl., Hierarchical Splatting of Scattered Data. In Proceedings of the 14th IEEE Visualization 2003 (VIS‘03), VIS ‘03, pages 57-, Washington, DC, USA, 2003. IEEE Computer Society.
[13] M. Hopf, M. Luttenberger, and T. Ertl, Hierarchical Splatting of Scattered 4D Data IEEE Comput. Graph. Appl., 24: 64-72, July 2004.
[14] Z. Jin, M. Krokos, M. Rivi, C. Gheller, K. Dolag,, and M. Reinecke., High-performance Astrophysical Visualization using Splotch. Procedia CS, 1(1): 1775-1784, 2010.
[15] A. A. Klypin,S. Trujillo-Gomez,, and J. Primack., Dark matter halos in the standard cosmological model: Results from the bolshoi simulation The Astrophysical Journal, 740(2): 102, 2011.
[16] M. Kraus, W. Qiao, and D. S., Ebert. Projecting tetrahedra without rendering artifacts. In Proceedings of the conference on Visualization ‘04, VIS ‘04, pages 27-34, Washington, DC, USA, 2004. IEEE Computer Society.
[17] A. Maximo, R. Marroquim, and R. Farias, Hardware-Assisted Projected Tetrahedra Computer Graphics Forum, 29(3): 903-34, 2010.
[18] J. J. Monaghan., An introduction to SPH. Computer Physics Communications, 48: 89-96, Jan. 1988.
[19] P. Muigg, M. Hadwiger, H. Doleisch,, and M. E. Gröller., Interactive Volume Visualization of General Polyhedral Grids. IEEE Transaction on Visualization and Computer Graphics, 17(12): 2115-2124,12 2011.
[20] P. J, E. Peebles, Principles of Physical Cosmology. 1993.
[21] U. Popov, K. Heitmann, J. Ahrens, S. Habib, and A. Pang, The Evolution of Multistreaming Events in the Formation of Large Scale Structures Technical Report, UCSC, (UCSC-SOE-11–17), 2011.
[22] D. J., Price. SPLASH: An Interactive Visualisation Tool for Smoothed Particle Hvdrodvnamics Simulations. 2007.
[23] C. Rycroft. The Voro++ Software Library. http://math.lbl.gov/voro++.
[24] S. Shandarin, S. Habib, and K. Heitmann, The Cosmic Web, Multi-Stream Flows, and Tessellations a rXiv, 1111.2366, 2011.
[25] P. Shirley and A. Tuchman., A Polygonal Approximation to Direct Scalar Volume Rendering. In Proceedings of the 1990 workshop on Volume visualization, VVS ‘90, pages 63–70, New York, NY, USA, 1990. ACM.
[26] V. Springel, The Cosmological Simulation Code Gadget-2 Monthly Notices of the Royal Astronomical Society, 364, 2005.
[27] T. Szalay, V. Springel, and G. Lemson., GPU-Based Interactive Visualization of Billion Point Cosmological Simulations, 2008.
[28] J. Wang and S. D M. White., Discreteness effects in simulations of hot/warm dark matter mnras, 380: 93-103, Sept. 2007.
[29] M. Weiler and T. Ertl., Hardware-software-balanced resampling for the interactive visualization of unstructured grids. In Proceedings of the conference on Visualization ‘01, VIS ‘01, pages 199–206, Washington, DC, USA, 2001. IEEE Computer Society.
[30] M. Weiler, M. Kraus, M. Merz,, and T. Ertl., Hardware-Based Ray Casting for Tetrahedral Meshes. In Proceedings of the 14th IEEE Visualization 2003 (VIS ‘03), VIS ‘03, pages 44-, Washington, DC, USA, 2003. IEEE Computer Society.
[31] R. Westermann., The rendering of unstructured grids revisited. In EG/IEEE TCVG Symposium on Visualization (VisSym ‘01), 2001.
[32] B. Wylie, K. Moreland, L. A. Fisk,, and P. Crossno., Tetrahedral projection using vertex shaders. In Proceedings of the 2002 IEEE symposium on Volume visualization and graphics, VVS ‘02, pages 7-12, Piscataway, NJ. USA. 2002. IEEE Press.
[33] Y. Zhou and M. Garland, Interactive point-based rendering of higher-order tetrahedral data IEEE Transactions on Visualization and Computer Graphics, 12(5): 2006, 2006.
[34] Y. Zhu and R. Bridson, Animating sand as a fluid ACM Trans. Graph., 24: 965-972, July 2005.
[35] F. Zwicky, On the Masses of Nebulae and of Clusters of Nebulae apj, 86:217, Oct. 1937.
15 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool