The Community for Technology Leaders
RSS Icon
Issue No.12 - Dec. (2012 vol.18)
pp: 2041-2050
Daniela Ushizima , Lawrence Berkeley National Laboratory
Dmitriy Morozov , Lawrence Berkeley National Laboratory
Gunther H. Weber , Lawrence Berkeley National Laboratory
Andrea G.C. Bianchi , Lawrence Berkeley National Laboratory
James A. Sethian , University of California, Berkeley
E. Wes Bethel , Lawrence Berkeley National Laboratory
One potential solution to reduce the concentration of carbon dioxide in the atmosphere is the geologic storage of captured CO2 in underground rock formations, also known as carbon sequestration. There is ongoing research to guarantee that this process is both efficient and safe. We describe tools that provide measurements of media porosity, and permeability estimates, including visualization of pore structures. Existing standard algorithms make limited use of geometric information in calculating permeability of complex microstructures. This quantity is important for the analysis of biomineralization, a subsurface process that can affect physical properties of porous media. This paper introduces geometric and topological descriptors that enhance the estimation of material permeability. Our analysis framework includes the processing of experimental data, segmentation, and feature extraction and making novel use of multiscale topological analysis to quantify maximum flow through porous networks. We illustrate our results using synchrotron-based X-ray computed microtomography of glass beads during biomineralization. We also benchmark the proposed algorithms using simulated data sets modeling jammed packed bead beds of a monodispersive material.
Geophysical measurements, Carbon dioxide, Sequestration, Algorithm design and analysis, Information analysis, Microscopy, Image segmentation, microscopy, Reeb graph, persistent homology, topological data analysis, geometric algorithms, segmentation
Daniela Ushizima, Dmitriy Morozov, Gunther H. Weber, Andrea G.C. Bianchi, James A. Sethian, E. Wes Bethel, "Augmented Topological Descriptors of Pore Networks for Material Science", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2041-2050, Dec. 2012, doi:10.1109/TVCG.2012.200
[1] Lawrence Berkeley National Laboratory (LBNL) Advanced Light Source (ALS). http:/ Access date: June6, 2012.
[2] J. Ajo-Franklin., Using synchrotron micro tomography for pore-scale monitoring of CaCO3 precipitation and CO2 flow. In Symposium of Nanoscale Control of Geologic CO2-Energy Frontier Research Center, Berkeley, CA, USA, 2010.
[3] R. Armstrong and J. Ajo-Franklin., Investigating biomineralization using synchrotron based X-ray computed microtomography. Geophysical Research Letters, 38(4), 2011.
[4] T. Boden, G. Marland, and R. Andres, Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center—ORNL.
[5] W. D. Carrier and F.ASCE. Goodbye, Hazen; Hello, Kozeny-Carman. Journal of Geotechnical and Geoenvironmental Engineering, 129(11): 1054-1056, Nov 2003.
[6] H. Childs, E. S. Brugger, K. S. Bonnell, J. S. Meredith, M. Miller, B. J. Whitlock, and N. Max, A contract-based system for large data visualization. In Proceedings of IEEE Visualization 2005, pages 190-198, 2005.
[7] H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological persistence and simplification. Discrete and Computational Geometry, 28(4): 511-533, 2002.
[8] L. R. Ford and D. R. Fulkerson, Maximal flow through a network. Cana-dian Journal of Mathematics, 8: 399-404, 1956.
[9] A. Gyulassy, V. Natarajan, M. Duchaineau, V. Pascucci, E. M. Bringa, A. Higginbotham, and B. Hamann, Topologically clean distance fields. IEEE Trans. on Vis. and Comput. Graph. (Proceedings IEEE Visualization 2007), 13(6): 1432-1439, November/December 2007.
[10] W. Harvey, Y. Wang, and R. Wenger, A randomized O(mlogm) time algorithm for computing Reeb graphs of arbitrary simplicial complexes. In Proceedings of the Annual Symposium on Computational Geometry, pages 267-276, 2010
[11] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii, Topology matching for fully automatic similarity estimation of 3D shapes. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH'01, pages 203-212, New York, NY, USA, 2001. ACM.
[12] J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Re-cent Advances. SPIE— The International Society for Optical Engineering, Bellingham, WA, USA, 2003. ISBN-13: 978-0819444257.
[13] L. Jing, A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences, 40(3): 283-353, 2003.
[14] C. Jones and K.-L. Ma, Visualizing flow trajectories using locality-based rendering and warped curve plots. IEEE Trans. Vis. Comput. Graph., pages 1587-1594, 2010.
[15] W. Lindquist, Quantitative analysis of three dimensional X-ray tomographic images. In Developments in X-ray Tomography III, Proceedings of SPIE, volume 4503, pages 103-115, Bellingham, WA, USA, 2002.
[16] W. B. Lindquist, S.-M. Lee, D. A. Coker, K. W. Jones, and P. Spanne, Medial axis analysis of three dimensional tomographic images of drill core samples. Journal of Geophysical Research, Solid Earth, 101(B4): 8297-8310, 1996.
[17] P. Nico, J. B. Ajo-Franklin, A. MacDowell, D. B. Silin, L. Tomutsa, S. M. Benson, and Y. Wu, Synchrotron X-ray micro-tomography and geological CO2 sequestration. Advances in Computed Tomography for Geomaterials - GeoX 2010, pages 374-380, 2010.
[18] S. Parsa, A deterministic O(mlogm) time algorithm for the Reeb graph. In Proceedings of the Annual Symposium on Computational Geometry, 2012.
[19] D. Silin and T. Patzek, Pore space morphology analysis using maximal inscribed spheres. Physica A: Statistical and Theoretical Physics, 371(2): 336-360, Nov. 2006.
[20] M. Skoge, A. Donev, F. H. Stillinger, and S. Torquato, Packing hyperspheres in high-dimensional euclidean spaces. Phys. Rev. E, 74:041127: 1-11, 2006.
[21] D. Ushizima, J. Ajo-Franklin, A. Macdowell, P. Nico, D. Parkinson, E. Bethel, and J. Sethian, Statistical segmentation and porosity quantification of 3D X-ray microtomography. SPIE Optics and Photonics: XXXIV Applications of Digital Image Processing, 8135-1: 1-14, 2011.
[22] D. M. Ushizima, G. H. Weber, J. Ajo-Franklin, Y. Kim, A. Macdowell, D. Morozov, P. Nico, D. Parkinson, D. Trebotich, J. Wan, and E. W. Bethel, Analysis and visualization for multiscale control of geologic CO2. Journal of Physics: Conference Series, Proceedings of SciDAC 2011, July 2011.
[23] F. J. Valdes-Parada, J. A. Ochoa-Tapia, and J. Alvarez-Ramirez, Validity of the permeability Carman—Kozeny equation: A volume averaging approach. Physica A, 388: 789-798, 2009.
[24] N. Yoshida, E. Higashimura, and Y. Saeki, Catalytic biomineralization of fluorescent calcite by the thermophilic bacterium geobacillus thermoglu-cosidasius. Appl. Environ. Microbiol., 76(21): 7322-7327, 2010.
[25] E. Zaman and P. Jalali, On hydraulic permeability of random packs of monodisperse spheres: direct flow simulations versus correlations. Physica A, 389: 205-214, 2010.
20 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool