The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2012 vol.18)
pp: 2033-2040
David Duke , University of Leeds, UK
Hamish Carr , University of Leeds, UK
Aaron Knoll , Argonne National Lab, USA
Nicolas Schunck , Lawrence Livermore National Lab, USA
Hai Ah Nam , Oak Ridge National Lab, USA
Andrzej Staszczak , University Marie Curie-Skłodowska, Poland
ABSTRACT
In nuclear science, density functional theory (DFT) is a powerful tool to model the complex interactions within the atomic nucleus, and is the primary theoretical approach used by physicists seeking a better understanding of fission. However DFT simulations result in complex multivariate datasets in which it is difficult to locate the crucial ‘scission’ point at which one nucleus fragments into two, and to identify the precursors to scission. The Joint Contour Net (JCN) has recently been proposed as a new data structure for the topological analysis of multivariate scalar fields, analogous to the contour tree for univariate fields. This paper reports the analysis of DFT simulations using the JCN, the first application of the JCN technique to real data. It makes three contributions to visualization: (i) a set of practical methods for visualizing the JCN, (ii) new insight into the detection of nuclear scission, and (iii) an analysis of aesthetic criteria to drive further work on representing the JCN.
INDEX TERMS
Topology, Data visualization, Discrete Fourier transforms, Nuclear physics, Trajectory, Approximation methods, multifields, Topology, scalar fields
CITATION
David Duke, Hamish Carr, Aaron Knoll, Nicolas Schunck, Hai Ah Nam, Andrzej Staszczak, "Visualizing Nuclear Scission through a Multifield Extension of Topological Analysis", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2033-2040, Dec. 2012, doi:10.1109/TVCG.2012.287
REFERENCES
[1] T. Banchoff, Critical points and curvature for embedded polyhedra. J. Diff. Geom, 1: 245-256, 1967.
[2] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Self-consistent mean-field models for nuclear structure. Reviews of Modern Physics, 75: 121, 2003.
[3] G. Bertsch, D. Dean, and W. Nazarewicz, Computing atomic nuclei. SciDAC Review, Winter: 42-51, 2007.
[4] N. Bohr and J. Wheeler, The mechanism of nuclear fission. Physical Review, 56: 121, 1939.
[5] R. L. Boyell and H. Ruston, Hybrid Techniques for Real-time Radar Simulation. In Proceedings of the 1963 Fall Joint Computer Conference, pages 445-458. IEEE, 1963.
[6] P.-T. Bremer, G. Weber, V. Pascucci, M. S. Day, and J. Bell, Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames. IEEE Transactions on Visualization and Computer Graphics, 16(2): 248-260, 2009.
[7] H. Carr and D. Duke, Joint contour nets: Topological analysis of mutli-variate data. In Vis Week Poster Compendium. IEEE, 2011.
[8] H. Carr and D. Duke, Joint contour nets: Topological analysis of mutli-variate data. In review at IEEE Transactions on Visualization and Computer Graphics, 2012.
[9] H. Carr, J. Snoeyink, and U. Axen, Computing Contour Trees in All Dimensions. Computational Geometry: Theory and Applications, 24(2): 75-94, 2003.
[10] H. Carr, J. Snoeyink, and M. van de Panne, Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree. Computational Geometry: Theory and Applications, 43(1): 42-58, 2010.
[11] B. Duffy, H. Carr, and T. Moller, Integrating Histograms and Isosurface Statistics. IEEE Transactions on Visualization and Computer Graphics, 2012. In press.
[12] H. Edelsbrunner and J. Harer, Jacobi Sets of Multiple Morse Functions. In Foundations in Computational Mathematics, pages 37-57, Cambridge, U.K., 2002. Cambridge University Press.
[13] H. Edelsbrunner, J. Harer, and A. Patel, Reeb spaces of piecewise linear mappings. In Proceedings of the twenty-fourth annual symposium on Computational geometry, pages 242-250. ACM Press, 2008.
[14] H. Edelsbrunner, J. Harer, and A. Zomorodian, Hierarchical Morse Complexes for Piecewise Linear 2-Manifolds. In Proceedings, 17th ACM Symposium on Computational Geometry, pages 70-79. ACM, 2001.
[15] H. Edelsbrunner and E. P. Miicke, Simulation of Simplicity: A technique to cope with degenerate cases in geometric algorithms. ACM Transactions on Graphics, 9(1): 66-104, 1990.
[16] R. Forman, Discrete morse theory for cell complexes. Advances in Mathematics, 134: 90-145, 1998.
[17] D. Harel and Y. Koren, Graph drawing by high-dimensional embedding. In Graph Drawing, volume 2528, pages 207-219. Springer-Verlag, 2002.
[18] C. Heine, D. Schneider, H. Carr, and G. Scheuermann, Drawing contour trees in the plane. TVCG, 17(11): 1599-1611, 2011.
[19] K. Kortelainen, T. Lesinski, J. More, W. Nazarewicz, J. Sarich, N. Schunck, M. Stoitsov, and S. Wild, Nuclear energy density optimization. Physical Review C, 82: 24313, 2010.
[20] K. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard, J. Sarich, N. Schunck, M. Stoitsov, and S. Wild, Nuclear energy density optimization: Large deformations. Physical Review C, 85: 024304, 2012.
[21] S. Mizuta and T. Matsuda, Description of the topological structure of digital images by region-based contour tree and its application. IEIC Technical Report (Institute of Electronics, Information and Communication Engineers), 104(290): 157-164, 2004.
[22] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli, Multi-resolution computation and presentation of contour trees. In Proc. Visualization, Imaging, and Image Processing, pages 452-290. IASTED, 2004.
[23] G. Reeb, Sur les points singuliers d'une forme de Pfaff complètement integrable ou d'une fonction numerique. Comptes Rendus de l'Acadèmic des Sciences de Paris, 222: 847-849, 1946.
[24] D. Schneider, C. Heine, H. Carr, and G. Scheuermann, Interactive Comparison of Multifield Scalar Data Based on Largest Contours. Accepted to Computer-Aided Geometric Design, 2012.
[25] D. Schneider, A. Wiebel, H. Carr, M. Hlawitschka, and G. Scheuermann, Interactive Comparison of Scalar Fields Based on Largest Contours with Applications to Flow Visualization. IEEE Transactions on Visualization and Computer Graphics, 14(6): 1475-1482, 2008.
[26] W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics. Kitware, 2006.
[27] Scientific grand challenges: Forefront questions in nuclear science and the role of high performance computing. 2009. [Online; accessed 21-June-2012].
[28] J. Skalski, Relative kinetic energy correction to self-consistent fission barriers. Physics Review C, 74(5): 51601, 2006.
[29] J. Skalski, Relative motion correction for fission barriers. Int. J. Modern Physics E, 17: 151, 2008.
[30] A. Staszczak, A. Baran, J. Dobaczewski, and W. Nazarewicz, Microscopic description of complex nuclear decay: Multimodal fission. Physical Review C, 80: 14309, 2009.
[31] A. Staszczak, J. Dobaczewski, and W. Nazarewicz, Bimodal fission in the skyrme-hartree-fock approach. Acta Physica Polonica, B38: 1589-1594, 2006.
[32] M. Ward and B. Lipchak, A visualization tool for exploratory analysis of cyclic multivariate data. Metrika, 51(1): 27-37, 2000.
[33] G. Weber, S. Dillard, H. Carr, V. Pascucci, and B. Hamann, Topology-Controlled Volume Rendering. IEEE Transactions on Visualization and Computer Graphics, 13(2): 330-341, March/April 2007.
[34] W. Younes and D. Gogny, Microscopic calculation of 240Pu scission with a finite-range effective force. Phvsical Review C 80: 54313, 2009.
[35] W. Younes and D. Gogny, Nuclear scission and quantum localization. Physical Review Letters, 107: 132501, 2011.
7 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool