The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - Dec. (2012 vol.18)
pp: 2023-2032
S. Frey , Visualization Res. Center (VISUS), Univ. of Stuttgart, Stuttgart, Germany
F. Sadlo , Visualization Res. Center (VISUS), Univ. of Stuttgart, Stuttgart, Germany
T. Ertl , Visualization Res. Center (VISUS), Univ. of Stuttgart, Stuttgart, Germany
ABSTRACT
This paper presents a visualization approach for detecting and exploring similarity in the temporal variation of field data. We provide an interactive technique for extracting correlations from similarity matrices which capture temporal similarity of univariate functions. We make use of the concept to extract periodic and quasiperiodic behavior at single (spatial) points as well as similarity between different locations within a field and also between different data sets. The obtained correlations are utilized for visual exploration of both temporal and spatial relationships in terms of temporal similarity. Our entire pipeline offers visual interaction and inspection, allowing for the flexibility that in particular time-dependent data analysis techniques require. We demonstrate the utility and versatility of our approach by applying our implementation to data from both simulation and measurement.
INDEX TERMS
matrix algebra, data analysis, data visualisation, inspection, interactive systems, time-dependent data analysis techniques, temporal similarity visualization approach, field data temporal variation, interactive technique, correlation extraction, similarity matrices, univariate function temporal similarity, quasiperiodic behavior extraction, visual exploration, temporal relationships, spatial relationships, visual interaction, visual inspection, Data visualization, Information analysis, Context awareness, Smoothing methods, Correlation, Machine learning, comparative visualization, Time-dependent fields, similarity analysis, interactive recurrence analysis
CITATION
S. Frey, F. Sadlo, T. Ertl, "Visualization of Temporal Similarity in Field Data", IEEE Transactions on Visualization & Computer Graphics, vol.18, no. 12, pp. 2023-2032, Dec. 2012, doi:10.1109/TVCG.2012.284
REFERENCES
[1] J. Ahrens, K. Heitmann, M. Peterson, J. Woodring, S. Williams, P. Fasel, C. Ahrens, C. Hsu, and B. Geveci, Verifying scientific simulations via comparative and quantitative visualization IEEE Computer Graphics and Applications, 30(6): 16-28, 2010.
[2] D. Angus, A. Smith, and J. Wiles, Conceptual recurrence plots: Revealing patterns in human discourse IEEE Transactions on Visualization and Computer Graphics, 18(6): 988-997, 2012.
[3] E. Bautista-Thompson,R. Brito-Guevara,, and R. Garza-Dominguez., Re-currencevs: A software tool for analysis of similarity in recurrence plots. In Proceedings of Electronics, Robotics and Automotive Mechanics Conference 2008, pages 183-188, 2008.
[4] W. Berger, H. Piringer, P. Filzmoser,, and E. Groller,Uncertainty-aware exploration of continuous parameter spaces using multivariate prediction. Computer Graphics Forum, 30(3): 911-34, 2011.
[5] A. J. Clarke, An Introduction to the Dynamics of El Nino & the Southern Oscillation. Academic Press, 2008.
[6] R. Cutler and L. Davis., Robust periodic motion and motion symmetry detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition 2000, 2, pages 615-622, 2000.
[7] D. Eberly., Ridges in Image and Data Analysis. Computational Imaging and Vision. Kluwer Academic Publishers, 1996.
[8] H. Edelsbrunner, D. Letscher, and A. Zomorodian., Topological persistence and simplification. In Proceedings of the 41 st Annual Symposium on Foundations of Computer Science, pages 454-463, 2000.
[9] Z. Fang, T. Moller, G. Hamarneh,, and A. Celler., Visualization and exploration of time-varying medical image data sets. In Proceedings of Graphics Interface 2007, pages 281-288, 2007.
[10] R. Fuchs, J. Waser, and M. Groller,Visual human+machine learning. IEEE Transactions on Visualization and Computer Graphics, 15(6): 1327-1334, 2009.
[11] S. Gerber, P. Bremer, V. Pascucci,, and R. Whitaker., Visual exploration of high dimensional scalar functions. IEEE Transactions on Visualization and Computer Graphics, 16(6): 1271-1280, 2010.
[12] M. Glatter, J. Huang, S. Ahern, J. Daniel, and A. Lu, Visualizing tem-poral patterns in large multivariate data using modified globbing IEEE Transactions on Visualization and Computer Graphics, 14(6): 1467-34, 2008.
[13] D. Guo, J. Chen, A. MacEachren,, and K. Liao., A visualization system for space-time and multivariate patterns (vis-stamp). IEEE Transactions on Visualization and Computer Graphics, 12(6): 1461-1474, 2006.
[14] H. Janicke, M. Bottinger, U. Mikolajewicz,, and G. Scheuermann., Visual exploration of climate variability changes using wavelet analysis. IEEE Transactions on Visualization and Computer Graphics, 15(6): 1375-34, 2009.
[15] H. Jänicke and G. Scheuermann., Knowledge assisted visualization: Steady visualization of the dynamics in fluids using s-machines. Com-puters and Graphics, 33(5): 597-34, 2009.
[16] J. Kehrer, P. Filzmoser, and H. Hauser, Brushing moments in interactive visual analysis Computer Graphics Forum, 29(3): 813-34, 2010.
[17] J. Kehrer, F. Ladstadter, P. Muigg, H. Doleisch, A. Steiner,, and H. Hauser., Hypothesis generation in climate research with interactive visual data exploration. IEEE Transactions on Visualization and Computer Graphics, 14(6): 1579-1586, 2008.
[18] E. Kononov. Visual recurrence analysis software. http://nonlinear.110mb.com/vra.
[19] P. Kothur, M. Sips, J. Kuhlmann,, and D. Dransch., Visualization of geospatial time series from environmental modeling output. In Short Paper Proceedings of the 14th Eurographics/IEEE VGTC Symposium on Visualization. pages 115-119. 2012.
[20] P. Kristensson, N. Dahlback, D. Anundi, M. Bjornstad, H. Gillberg, J. Haraldsson, I. Martensson, M. Nordvall, and J. Stahl., An evaluation of space time cube representation of spatiotemporal patterns. IEEE Transactions on Visualization and Computer Graphics, 15(4): 696-702, 2009.
[21] O. D. Lampe and H. Hauser., Curve density estimates Computer Graphics Forum, 30(3): 633-34, 2011.
[22] T.-Y. Lee and H.-W. Shen, Visualization and exploration of temporal trend relationships in multivariate time-varying data IEEE Transactions on Visualization and Comnuter Graphics, 15(6): 1359-1366, 2009.
[23] T.-Y. Lee and H.-W. Shen., Visualizing time-varying features with tac-based distance fields. In Proceedings of the 2009 IEEE Pacific Visualization Symposium, pages 1-8, 2009.
[24] W. E. Lorensen and H. E. Cline., Marching cubes: A high resolution 3d surface construction algorithm SIGGRAPH Comput. Graph., 21(4):163169, 1987.
[25] K.-L. Ma, Machine learning to boost the next generation of visualization technology IEEE Computer Graphics and Applications, 27(5): 6-34, 2007.
[26] M. M. Malik, C. Heinzl, and M. E., Groller, Comparative visualization for parameter studies of dataset series IEEE Transaction on Visualization and Computer Graphics, 16(5): 829-840, 2010.
[27] N. Marwan, M. Carmenromano, M. Thiel,, and J. Kurths., Recurrence plots for the analysis of complex systems. Physics Reports, 438(5-6):237329, 2007.
[28] N. Marwan, J. Kurths, and P. Saparin, Generalised recurrence plot analysis for spatial data Phys. Lett. A 360 (45), pages 545-551, 2007.
[29] L. Matassini, H. Kantz, J. Holyst,, and R. Hegger., Optimizing of recurrence plots for noise reduction. Phys. Rev. E, 65(2):021102, 2002.
[30] R. Peikert and F. Sadlo., Visualization methods for vortex rings and vortex breakdown bubbles. In Proceedings of the 9th Eurographics/IEEE VGTC Symposium on Visualization, pages 211-218, 2007.
[31] R. Peikert and F. Sadlo., Height ridge computation and filtering for visualization. In Proceedings of the 2008 IEEE Pacific Visualization Symposium, pages 119–126, 2008.
[32] T. Pham, R. Hess, C. Ju, E. Zhang, and R. Metoyer, Visualization of diversity in large multivariate data sets IEEE Transactions on Visualization and Computer Graphics, 16(6): 1053-1062, 2010.
[33] J. Reininghaus, N. Kotava, D. Gunther, J. Kasten, H. Hagen,, and I. Hotz., A scale space based persistence measure for critical points in 2d scalar fields. IEEE Transactions on Visualization and Computer Graphics, 17(12): 2045-34, 2011.
[34] T. M. Rhyne, A. MacEachren, and T.-M. Rhyne., Visualizing geospatial data. In Proceedings of ACM SIGGRAPH 2004 Course Notes, 2004.
[35] F. Sadlo, R. Peikert, and M. Sick, Visualization tools for vorticity trans-port analysis in incompressible flow IEEE Transactions on Visualization and Computer Graphics, 12(5): 949-34, 2006.
[36] T. Salzbrunn, C. Garth, G. Scheuermann,, and J. Meyer., Pathline predi-cates and unsteady flow structures. Visual Computer, 24(12): 1039-34, 2008.
[37] A. Sanderson, G. Chen, X. Tricoche, D. Pugmire, S. Kruger,, and J. Bres-lau., Analysis of recurrent patterns in toroidal magnetic fields. IEEE Transactions on Visualization and Computer Graphics, 16(6): 1431-34, 2010.
[38] N. Sauber, H. Theisel, and H.-P. Seidel, Multifield-graphs: An approach to visualizing correlations in multifield scalar data IEEE Transactions on Visualization and Computer Graphics, 12(5): 917-34, 2006.
[39] D. Vasconcelos, S. Lopes, R. Viana,, and J. Kurths., Spatial recurrence plots. Phys. Rev. E 73, 2006.
[40] C. Wang, H. Yu, and K.-L. Ma, Importance-driven time-varying data visualization IEEE Transactions on Visualization and Computer Graphics, 14(6): 1547-1554, 2008.
[41] J. Waser, R. Fuchs, H. Ribic andic, and B. Schindler, G. Bloschl,, and E. Groller,World lines. IEEE Transactions on Visualization and Computer Graphics, 16(6): 1458-1467, 2010.
[42] J. P. Zbilut and C. L. Webber., Embeddings and delays as derived from quantification of recurrence plots Physics Letters A, 171(34): 199–203, 1992.
16 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool