
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Yang Liu, Balakrishnan Prabhakaran, Xiaohu Guo, "PointBased Manifold Harmonics," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 10, pp. 16931703, Oct., 2012.  
BibTex  x  
@article{ 10.1109/TVCG.2011.152, author = {Yang Liu and Balakrishnan Prabhakaran and Xiaohu Guo}, title = {PointBased Manifold Harmonics}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {18}, number = {10}, issn = {10772626}, year = {2012}, pages = {16931703}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.152}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  PointBased Manifold Harmonics IS  10 SN  10772626 SP1693 EP1703 EPD  16931703 A1  Yang Liu, A1  Balakrishnan Prabhakaran, A1  Xiaohu Guo, PY  2012 KW  Manifolds KW  Symmetric matrices KW  Eigenvalues and eigenfunctions KW  Harmonic analysis KW  Convergence KW  Laplace equations KW  Approximation methods KW  eigenfunction. KW  Pointsampled surface KW  LaplaceBeltrami operator VL  18 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] M. Belkin, J. Sun, and Y. Wang, "Constructing Laplace Operator from Point Clouds in ${\hbox{\rlap{I}\kern 2.0pt{\hbox{R}}}}^d$ ," Proc. 19th Ann. ACMSIAM Symp. Discrete Algorithms, pp. 10311040, 2009.
[2] S. Rosenberg, The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds, ser. London Mathematical Society Student Texts. Cambridge Univ. Press, 1997.
[3] J. Jost, Riemannian Geometry and Geometric Analysis, ser. Universitext. Springer, 2002.
[4] M. Reuter, F.E. Wolter, and N. Peinecke, "LaplaceBeltrami Spectra as "ShapeDNA" of Surfaces and Solids," ComputerAided Design, vol. 38, no. 4, pp. 342366, 2006.
[5] B. Vallet and B. Lévy, "Spectral Geometry Processing with Manifold Harmonics," Computer Graphics Forum, vol. 27, no. 2, pp. 251260, 2008.
[6] J. Hu and J. Hua, "Salient Spectral Geometric Features for Shape Matching and Retrieval," The Visual Computer, vol. 25, nos. 57, pp. 667675, 2009.
[7] H. Zhang, O. van Kaick, and R. Dyer, "Spectral Methods for Mesh Processing and Analysis," Proc. Eurographics StateoftheArt Report, pp. 122, 2007.
[8] N. Peinecke, F.E. Wolter, and M. Reuter, "Laplace Spectra as Fingerprints for Image Recognition," Computer Aided Design, vol. 39, pp. 460476, http://portal.acm.orgcitation. cfm?id=1244485.1244880 , June 2007.
[9] K. Hildebrandt and K. Polthier, "On Approximation of the LaplaceBeltrami Operator and the Willmore Energy of Surfaces," Computer Graphics Forum, vol. 30, pp. 15131520, 2011.
[10] K. Huseyin, Vibration and Stability of Multiple Parameter Systems. Springer, 1978.
[11] B. Lévy, "LaplaceBeltrami Eigenfunctions Towards an Algorithm that 'Understands' Geometry," Proc. IEEE Int'l Conf. Shape Modeling and Applications, p. 13, 2006.
[12] L. Miao, J. Huang, X. Liu, H. Bao, Q. Peng, and B. Guo, "Computing Variation Modes for Point Set Surfaces," Proc. Eurographics/IEEE VGTC Symp. PointBased Graphics, pp. 6369, June 2005.
[13] G. Taubin, "A Signal Processing Approach to Fair Surface Design," Proc. ACM SIGGRAPH '95, pp. 351358, 1995.
[14] R. Liu and H. Zhang, "Mesh Segmentation via Spectral Embedding and Contour Analysis," Computer Graphics Forum, vol. 26, pp. 385394, 2007.
[15] Z. Karni and C. Gotsman, "Spectral Compression of Mesh Geometry," Proc. ACM SIGGRAPH '00, pp. 279286, 2000.
[16] D. Cotting, T. Weyrich, M. Pauly, and M. Gross, "Robust Watermarking of PointSampled Geometry," Proc. the Shape Modeling Applications Int'l, pp. 233242, 2004.
[17] J. Wu and L. Kobbelt, "Efficient Spectral Watermarking of Large Meshes with Orthogonal Basis Functions," The Visual Computer, vol. 21, nos. 810, pp. 848857, 2005.
[18] S. Dong, P.T. Bremer, M. Garland, V. Pascucci, and J.C. Hart, "Spectral Surface Quadrangulation," ACM Trans. Graphics, vol. 25, no. 3, pp. 10571066, 2006.
[19] J. Huang, M. Zhang, J. Ma, X. Liu, L. Kobbelt, and H. Bao, "Spectral Quadrangulation with Orientation and Alignment Control," ACM Trans. Graphics, vol. 27, no. 5, p. 147, 2008.
[20] P. Mullen, Y. Tong, P. Alliez, and M. Desbrun, "Spectral Conformal Parameterization," Computer Graphics Forum, vol. 27, pp. 14871494, 2008.
[21] M. Desbrun, M. Meyer, P. Schröder, and A.H. Barr, "Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow," Proc. ACM SIGGRAPH '99, pp. 317324, 1999.
[22] M. Meyer, M. Desbrun, P. Schröder, and A. Barr, "Discrete DifferentialGeometry Operator for Triangulated 2Manifolds," Proc. Visual Mathematics '02, 2002.
[23] G. Xu, "Discrete LaplaceBeltrami Operators and Their Convergence," Computer Aided Geometric Design, vol. 21, no. 8, pp. 767784, 2004.
[24] U. Pinkall and K. Polthier, "Computing Discrete Minimal Surfaces and Their Conjugates," Experimental Math., vol. 2, no. 1, pp. 1536, 1993.
[25] K. Hildebrandt, K. Polthier, and M. Wardetzky, "On the Convergence of Metric and Geometric Properties of Polyhedral Surfaces," Geometriae Dedicata, vol. 123, no. 1, pp. 89112, 2006.
[26] M. Wardetzky, S. Mathur, F. Kälberer, and E. Grinspun, "Discrete Laplace Operators: No Free Lunch," Proc. Fifth Eurographics Symp. Geometry Processing, pp. 3337, 2007.
[27] M. Reuter, S. Biasotti, D. Giorgi, G. PatanÃ¨, and M. Spagnuolo, "Discrete LaplaceBeltrami Operators for Shape Analysis and Segmentation," Computers & Graphics, vol. 33, no. 3, pp. 381390, 2009.
[28] M. Belkin and P. Niyogi, "Towards a Theoretical Foundation for LaplacianBased Manifold Methods," Proc. 18th Conf. Learning Theory (COLT), pp. 486500, 2005.
[29] M. Belkin, J. Sun, and Y. Wang, "Discrete Laplace Operator on Meshed Surfaces," Proc. 24th Ann. Symp. Computational Geometry, pp. 278287, 2008.
[30] T.K. Dey, P. Ranjan, and Y. Wang, "Convergence, Stability, and Discrete Approximation of Laplace Spectra," Proc. ACMSIAM Symp. Discrete Algorithms, pp. 650663, 2010.
[31] R.R. Coifman and S. Lafon, "Diffusion Maps," Applied and Computational Harmonic Analysis, vol. 21, no. 1, pp. 530, 2006.
[32] H. Zhang, "Discrete Combinatorial Laplacian Operators for Digital Geometry Processing," Proc. SIAM Conf. Geometric Design and Computing, pp. 575592, 2004.
[33] C. Luo, J. Sun, and Y. Wang, "Integral Estimation from Point Cloud in DDimensional Space: A Geometric View," SCG '09: Proc. 25th Ann. Symp. Computational Geometry, pp. 116124, 2009.
[34] N. Amenta, M. Bern, and M. Kamvysselis, "A New VoronoiBased Surface Reconstruction Algorithm," Proc. ACM SIGGRAPH '98, pp. 415421, 1998.
[35] J. Giesen and U. Wagner, "Shape Dimension and Intrinsic Metric from Samples of Manifolds with High CoDimension," Proc. 19th Ann. Symp. Computational Geometry, pp. 329337, 2003.
[36] N. Amenta and M. Bern, "Surface Reconstruction by Voronoi Filtering," Proc. 14th Ann. Symp. Computational Geometry, pp. 3948, 1998.
[37] H. Blum, "A Transformation for Extracting New Descriptors of Shape," Models for the Perception of Speech and Visual Form, W.W. Dunn, ed., pp. 362380, MIT Press, 1967.
[38] F.E. Wolter, Cut Locus & Medial Axis in Global Shape Interrogation & Representation. Sea Grant College Program, Massachusetts Inst. of Tech nology 1992.
[39] S. HarPeled and K. Varadarajan, "Projective Clustering in High Dimensions Using CoreSets," Proc. 18th Ann. Symp. Computational Geometry, pp. 312318, 2002.