
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
J. Kasten, J. Reininghaus, T. Weinkauf, I. Hotz, "Efficient Computation of Combinatorial Feature Flow Fields," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 9, pp. 15631573, Sept., 2012.  
BibTex  x  
@article{ 10.1109/TVCG.2011.269, author = {J. Kasten and J. Reininghaus and T. Weinkauf and I. Hotz}, title = {Efficient Computation of Combinatorial Feature Flow Fields}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {18}, number = {9}, issn = {10772626}, year = {2012}, pages = {15631573}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.269}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Efficient Computation of Combinatorial Feature Flow Fields IS  9 SN  10772626 SP1563 EP1573 EPD  15631573 A1  J. Kasten, A1  J. Reininghaus, A1  T. Weinkauf, A1  I. Hotz, PY  2012 KW  numerical analysis KW  combinatorial mathematics KW  computational fluid dynamics KW  flow visualisation KW  flow visualization KW  combinatorial feature flow field computation KW  combinatorial algorithm KW  critical points tracking KW  2D timedependent scalar fields KW  tracking algorithms KW  numerical schemes KW  computational parameters KW  noise robustness KW  importance measure KW  spatial persistence KW  temporal evolution KW  timeaware feature hierarchy KW  computational fluid dynamics KW  Feature extraction KW  Algorithm design and analysis KW  Joining processes KW  Manifolds KW  Noise measurement KW  Jacobian matrices KW  Noise KW  graph algorithms. KW  Flow visualization VL  18 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] H. Theisel and H.P. Seidel, "Feature Flow Fields," VISSYM '03: Proc. Symp. Data Visualization, pp. 141148, 2003.
[2] R. Forman, "Combinatorial Vector Fields and Dynamical Systems," Math. Zeitschrift, vol. 228, no. 4, pp. 629681, Aug. 1998.
[3] H. Edelsbrunner, J. Harer, and A. Zomorodian, "Hierarchical Morse Complexes for Piecewise Linear 2Manifolds," Proc. 17th Symp. Computational Geometry, pp. 7079, 2001.
[4] H. King, K. Knudson, and N. Mramor, "Birth and Death in Discrete Morse Theory," arXiv:0808.0051v1, http://adsabs. harvard.edu/abs2008arXiv0808.0051K , 2008.
[5] A. Yilmaz, O. Javed, and M. Shah, "Object Tracking: A Survey," ACM Computing Surveys, vol. 38, no. 4, p. 13, 2006.
[6] F.H. Post, "The State of the Art in Flow Visualization: Feature Extraction and Tracking," Computer Graphics Forum, vol. 22, no. 4, pp. 775792, http://www.vrvis.at/scivis/starindex.html , June 2003.
[7] J. Caban, A. Joshi, and P. Rheingans, "TextureBased Feature Tracking for Effective TimeVarying Data Visualizations," IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 6, pp. 14721479, Nov./Dec. 2007.
[8] R. Samtaney, D. Silver, N. Zabusky, and J. Cao, "Visualizing Features and Tracking Their Evolution," Computer, vol. 27, no. 7, pp. 2027, July 1994.
[9] F. Reinders, F. Post, and H. Spoelder, "AttributeBased Feature Tracking," Proc. Data Visualization, 1999.
[10] D. Laney, P.T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci, "Understanding the Structure of the Turbulent Mixing Layer in Hydrodynamic Instabilities," IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 5, pp. 10531060, Sept./Oct. 2006.
[11] W. de Leeuw and R. van Liere, "Chromatin Decondensation: A Case Study of Tracking Features in Confocal Data," Proc. IEEE Conf. Visualization (VIS '01), pp. 441444, 2001.
[12] D. Silver and X. Wang, "Tracking and Visualizing Turbulent 3D Features," IEEE Trans. Visualization and Computer Graphics, vol. 3, no. 2, pp. 129141, www.caip.rutgers.eduvislab.html, Apr.June 1997.
[13] G. Ji, "Feature Tracking and Viewing for TimeVarying Data Sets," PhD dissertation, Ohio State Univ., 2006.
[14] F. Reinders, I.A. Sadarjoen, B. Vrolijk, and F.H. Post, "Vortex Tracking and Visualisation in a Flow Past a Tapered Cylinder," Computer Graphics Forum, vol. 21, no. 4, pp. 675682, 2002.
[15] C. Bajaj, A. Shamir, and B.S. Sohn, "Progressive Tracking of Isosurfaces in TimeVarying Scalar Fields," Technical Report TR024, Dept. of Computer Sciences and TICAM, Univ. of Texas, CS and TICAM, 2002.
[16] B.S. Sohn and C. Bajaj, "TimeVarying Contour Topology," IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 1, pp. 1425, Jan./Feb. 2006.
[17] C. Weigle and D.C. Banks, "Extracting IsoValued Features in 4D Scalar Fields," VVS '98: Proc. IEEE Symp. Vol. Visualization, pp. 103110, 1998.
[18] G. Ji, H.W. Shen, and R. Wenger, "Volume Tracking Using Higher Dimensional Isosurfacing," VIS '03: Proc. IEEE 14th Visualization, pp. 209216, 2003.
[19] G.H. Weber, P.T. Bremer, M.S. Day, J.B. Bell, and V. Pascucci, "Feature Tracking Using Reeb Graphs," Topological Methods in Data Analysis and Visualization: Theory, Algorithms, and Applications, V. Pascucci, X. Tricoche, H. Hagen, and J. Tierny, eds., pp. 241253, Springer Verlag, 2011.
[20] P.T. Bremer, G.H. Weber, V. Pascucci, M. Day, and J.B. Bell, "Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames," IEEE Trans. Visualization and Computer Graphics, vol. 16, no. 2, pp. 248260, Mar./Apr. 2010.
[21] X. Tricoche, T. Wischgoll, G. Scheuermann, and H. Hagen, "Topology Tracking for the Visualization of TimeDependent 2D Flows," Computer and Graphics, vol. 26, pp. 249257, 2002.
[22] C. Garth, X. Tricoche, and G. Scheuermann, "Tracking of Vector Field Singularities in Unstructured 3D TimeDependent Datasets," VIS '04: Proc. Conf. Visualization, pp. 329336, 2004.
[23] D. Bauer and R. Peikert, "Vortex Tracking in Scale Space," Proc. Symp. Data Visualization, pp. 140147, citeseer.csail.mit.edubauer02vortex.html , May 2002.
[24] H. Edelsbrunner and J. Harer, "Jacobi Sets of Multiple Morse Functions," Foundations of Computational Math., Minneapolis 2002, F. Cucker, R. DeVore, P. Olver, and E. Sueli, eds., pp. 3757, Cambridge Univ. Press, 2004.
[25] H. Edelsbrunner, J. Harer, A. Mascarenhas, J. Snoeyink, and V. Pascucci, "TimeVarying Reeb Graphs for Continuous SpaceTime Data," Computation Geometry: Theory and Applications, vol. 41, no. 3, pp. 149166, 2008.
[26] M.K. Chari, "On Discrete Morse Functions and Combinatorial Decompositions," Discrete Math., vol. 217, nos. 13, pp. 101113, 2000.
[27] T. Lewiner, "Geometric Discrete Morse Complexes," PhD dissertation, Dept. of Math., PUCRio, advised by Hélio Lopes and Geovan Tavares, http://www.matmidia.mat.pucrio.br/ ~tomlew phd_thesis_puc_uk.pdf, 2005.
[28] U. Bauer, C. Lange, and M. Wardetzky, "Optimal Topological Simplification of Discrete Functions on Surfaces," arXiv:1001.1269v2, 2010.
[29] J. Reininghaus, D. Günther, I. Hotz, S. Prohaska, and H.C. Hege, "TADD: A Computational Framework for Data Analysis Using Discrete Morse Theory," Proc. Third Int'l Congress Conf. Math. Software (ICMS '10), 2010.
[30] R. Forman, "Morse Theory for Cell Complexes," Advances in Math., vol. 134, pp. 90145, 1998.
[31] R. Forman, "A User's Guide to Discrete Morse Theory," Seminaire Lotharingien de Combinatoire, vol. B48c, pp. 135, 2002.
[32] A. Gyulassy, P.T. Bremer, B. Hamann, and V. Pascucci, "A Practical Approach to MorseSmale Complex Computation: Scalability and Generality," IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 6, pp. 16191626, Nov./Dec. 2008.
[33] H. Edelsbrunner, D. Letscher, and A. Zomorodian, "Topological Persistence and Simplification," Discrete and Computational Geometry, vol. 28, pp. 511533, 2002.
[34] V. Robins, P. Wood, and A. Sheppard, "Discrete Morse Theory for Grayscale Digital Images," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp. 16461658, Aug. 2011.
[35] D. CohenSteiner, H. Edelsbrunner, and D. Morozov, "Vines and Vineyards by Updating Persistence in Linear Time," Proc. 22nd Ann. Symp. Computational Geometry, pp. 119126, http://doi.acm. org/10.11451137856.1137877 , 2006.
[36] T. Weinkauf, H. Theisel, A.V. Gelder, and A. Pang, "Stable Feature Flow Fields," IEEE Trans. Visualization and Computer Graphics, vol. 17, no. 6, pp. 770780, http:/tinoweinkauf.net/, June 2011.
[37] B.R. Noack, M. Schlegel, B. Ahlborn, G. Mutschke, M. Morzyński, P. Comte, and G. Tadmor, "A FiniteTime Thermodynamics of Unsteady Fluid Flows," J. NonEquilibrium Thermodynamics, vol. 33, no. 2, pp. 103148, 2008.
[38] J. Kasten, I. Hotz, B. Noack, and H.C. Hege, "On the Extraction of LongLiving Features in Unsteady Fluid Flows," Topological Methods in Data Analysis and Visualization: Theory, Algorithms, and Applications, V. Pascucci, X. Tricoche, H. Hagen, and J. Tierny, eds., pp. 115126, Springer, 2010.
[39] E. Caraballo, M. Samimy, and J. DeBonis, "Low Dimensional Modeling of Flow for ClosedLoop Flow Control," Am. Inst. Aeronautics and Astronautics (AIAA Paper), vol. 59, 2003.
[40] R. Fuchs, J. Kemmler, B. Schindler, F. Sadlo, H. Hauser, and R. Peikert, "Toward a Lagrangian Vector Field Topology," Computer Graphics Forum, vol. 29, no. 3, pp. 11631172, 2010.
[41] T. Weinkauf, J. Sahner, H. Theisel, and H.C. Hege, "Cores of Swirling Particle Motion in Unsteady Flows," IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 6, pp. 17591766, Nov./Dec. 2007.