
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
H. Bhatia, S. Jadhav, P. Bremer, Guoning Chen, J. A. Levine, L. G. Nonato, V. Pascucci, "Flow Visualization with Quantified Spatial and Temporal Errors Using Edge Maps," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 9, pp. 13831396, Sept., 2012.  
BibTex  x  
@article{ 10.1109/TVCG.2011.265, author = {H. Bhatia and S. Jadhav and P. Bremer and Guoning Chen and J. A. Levine and L. G. Nonato and V. Pascucci}, title = {Flow Visualization with Quantified Spatial and Temporal Errors Using Edge Maps}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {18}, number = {9}, issn = {10772626}, year = {2012}, pages = {13831396}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.265}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Flow Visualization with Quantified Spatial and Temporal Errors Using Edge Maps IS  9 SN  10772626 SP1383 EP1396 EPD  13831396 A1  H. Bhatia, A1  S. Jadhav, A1  P. Bremer, A1  Guoning Chen, A1  J. A. Levine, A1  L. G. Nonato, A1  V. Pascucci, PY  2012 KW  Visualization KW  Image edge detection KW  Linear approximation KW  Uncertainty KW  Data visualization KW  Skeleton KW  edge maps. KW  Vector fields KW  error quantification VL  18 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] H. Bhatia, S. Jadhav, P.T. Bremer, G. Chen, J.A. Levine, L.G. Nonato, and V. Pascucci, "Edge Maps: Representing Flow with Bounded Error," Proc. IEEE Fourth Pacific Visualization Symp., pp. 7582, Mar. 2011.
[2] D. Bommes, H. Zimmer, and L. Kobbelt, "MixedInteger Quadrangulation," ACM Trans. Graphics, vol. 28, no. 3, p. 1, 2009.
[3] G. Chen, K. Mischaikow, R.S. Laramee, P. Pilarczyk, and E. Zhang, "Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition," IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 4, pp. 769785, July/Aug. 2007.
[4] G. Chen, K. Mischaikow, R.S. Laramee, and E. Zhang, "Efficient Morse Decompositions of Vector Fields," IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 4, pp. 848862, July/Aug. 2008.
[5] H. Edelsbrunner, J. Harer, and A. Zomorodian, "Hierarchical MorseSmale Complexes for Piecewise Linear 2Manifolds," Discrete and Computational Geometry, vol. 30, no. 1, pp. 87107, 2003.
[6] M. Fisher, P. Schröder, M. Desbrun, and H. Hoppe, "Design of Tangent Vector Fields," ACM Trans. Graphics, vol. 26, no. 3, p. 56, 2007.
[7] M.S. Floater, G. Kos, and M. Reimers, "Mean Value Coordinates in 3D," Computer Aided Geometric Design, vol. 22, pp. 623631, 2005.
[8] R. Forman, "A User's Guide to Discrete Morse Theory," Proc. Int'l Conf. Formal Power Series and Algebraic Combinatorics, p. 48, 2001.
[9] C. Garth, H. Krishnan, X. Tricoche, T. Tricoche, and K.I. Joy, "Generation of Accurate Integral Surfaces in TimeDependent Vector Fields," IEEE Trans. Visualization Computational Graphics, vol. 14, no. 6, pp. 14041411, Nov./Dec. 2008.
[10] A. Globus, C. Levit, and T. Lasinski, "A Tool for Visualizing the Topology of ThreeDimensional Vector Fields," Proc. IEEE Visualization, pp. 3341, 1991.
[11] A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann, "Efficient Computation of MorseSmale Complexes for ThreeDimensional Scalar Functions," IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 6, pp. 14401447, Nov./Dec. 2007.
[12] E. Hairer, S.P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in Computational Mathematics. SpringerVerlag, 1993.
[13] E.R. Hawkes, R. Sankaran, P.P. bay, and J.H. Chen, "Direct Numerical Simulation of Ignition Front Propagation in a Constant Volume with Temperature Inhomogeneities: II. Parametric Study," Combustion and Flame, vol. 145, nos. 1/2, pp. 145159, 2006.
[14] J. Helman and L. Hesselink, "Representation and Display of Vector Field Topology in Fluid Flow Data Sets," Computer, vol. 22, no. 8, pp. 2736, Aug. 1989.
[15] M.W. Hirsch, S. Smale, and R.L. Devaney, Differential Equations, Dynamical Systems, and An Introduction To Chaos, second ed. Elsevier Academic Press, 2004.
[16] J.P. Hultquist, "Constructing Stream Surfaces in Steady 3D Vector Fields," Proc. IEEE Visualization, pp. 171178, 1992.
[17] S. Jadhav, H. Bhatia, P.T. Bremer, J.A. Levine, L.G. Nonato, and V. Pascucci, "Consistent Approximation of Local Flow Behavior for 2D Vector Fields Using Edge Maps," Proc. Topological Methods in Data Analysis and Visualization II  Theory, Algorithms, and Applications, Part 3, pp. 141159, 2012.
[18] K.M. Janine, J. Bennett, G. Scheuermann, B. Hamann, and K.I. Joy, "Topological Segmentation in ThreeDimensional Vector Fields," IEEE Trans. Visualization and Computer Graphics, vol. 10, no. 2, pp. 198205, Mar./Apr. 2004.
[19] C.R. Johnson and A.R. Sanderson, "A Next Step: Visualizing Errors and Uncertainty," IEEE Computer Graphics and Applications, vol. 23, no. 5, pp. 610, Sept./Oct. 2003.
[20] P. Kipfer, F. Reck, and G. Greiner, "G.: Local Exact Particle Tracing on Unstructured Grids," Computer Graphics Forum, vol. 22, pp. 133142, 2003.
[21] D.E. Laney, P.T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci, "Understanding the Structure of the Turbulent Mixing Layer in Hydrodynamic Instabilities," IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 5, pp. 10531060, Sept./Oct. 2006.
[22] R.S. Laramee, H. Hauser, L. Zhao, and F.H. Post, "Topology Based Flow Visualization: The State of the Art," TopologyBased Methods in Visualization, Mathematics and Visualization, pp. 119, Springer, 2007.
[23] R.S. Laramee, D. Weiskopf, J. Schneider, and H. Hauser, "Investigating Swirl and Tumble Flow with a Comparison of Visualization Techniques," Proc. IEEE Visualization, pp. 5158, 2004.
[24] Y. Lavin, R. Batra, and L. Hesselink, "Feature Comparisons of Vector Fields Using Earth Mover's Distance," Proc. IEEE/ACM Visualization, pp. 103109, Oct. 1998.
[25] M. Maltrud, F. Bryan, and S. Peacock, "Boundary Impulse Response Functions in a CenturyLong Eddying Global Ocean Simulation," Environmental Fluid Mechanics, vol. 10, pp. 275295, 2010.
[26] G. Nielson and I.H. Jung, "Tools for Computing Tangent Curves for Linearly Varying Vector Fields over Tetrahedral Domains," IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 4, pp. 360372, Oct. 1999.
[27] M. Otto, T. Germer, H.C. Hege, and H. Theisel, "Uncertain 2D Vector Field Topology," Computer Graphics Forum, vol. 29, no. 2, pp. 347356, 2010.
[28] M. Otto, T. Germer, and H. Theisel, "Uncertain topology of 3D Vector Fields," Proc. IEEE Fourth Pacific Visualization Symp., pp. 6574, 2011.
[29] A.T. Pang, C.M. Wittenbrink, and S.K. Lodha, "Approaches to Uncertainty Visualization," The Visual Computer, vol. 13, pp. 370390, 1996.
[30] N. Ray, B. Vallet, W.C. Li, and B. Lévy, "NSymmetry Direction Field Design," ACM Trans. Graphics, vol. 27, no. 2, pp. 113, 2008.
[31] J. Reininghaus and I. Hotz, "Combinatorial 2D Vector Field Topology Extraction and Simplification," Proc. Workshop Topological Methods in Data Analysis and Visualization, 2009.
[32] J. Reininghaus, C. Löwen, and I. Hotz, "Fast Combinatorial Vector Field Topology," IEEE Trans. Visualization and Computer Graphics, vol. 17, no. 10, pp. 14331443, Oct. 2011.
[33] G. Scheuermann, T. Bobach, H. Hagen, K. Mahrous, B. Hamann, K.I. Joy, and W. Kollmann, "A TetrahedraBased Stream Surface Algorithm," Proc. Conf. Visualization (VIS '01), pp. 151158, 2001.
[34] G. Scheuermann, H. Krüger, M. Menzel, and A.P. Rockwood, "Visualizing Nonlinear Vector Field Topology," IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 2, pp. 109116, Apr.June 1998.
[35] G. Scheuermann and X. Tricoche, "Topological Methods in Flow Visualization," Visualization Handbook, pp. 341356, Elsevier, 2004.
[36] A. Szymczak, "Stable Morse Decompositions for Piecewise Constant Vector Fields on Surfaces," Proc. Joint Eurographics  IEEE Symp. Visualization (EuroVis '11), 2011.
[37] A. Szymczak and E. Zhang, "Robust Morse Decompositions of Piecewise Constant Vector Fields," IEEE Trans. Visualization and Computer Graphics, 2011.
[38] H. Theisel, T. Weinkauf, H.C. Hege, and H.P. Seidel, "Saddle Connectors  An Approach to Visualizing the Topological Skeleton of Complex 3D Vector Fields," Proc. IEEE Visualization, pp. 225232, 2003.
[39] J.J. van Wijk, "Image Based Flow Visualization," ACM Trans. Graphics, vol. 21, no. 3, pp. 754754, 2002.
[40] V. Verma and A. Pang, "Comparative Flow Visualization," IEEE Trans. Visualization and Computer Graphics, vol. 10, no. 6, pp. 609624, Nov./Dec. 2004.
[41] T. Weinkauf, H. Theisel, K. Shi, H.C. Hege, and H.P. Seidel, "Extracting Higher Order Critical Points and Topological Simplification of 3D Vector Fields," Proc. IEEE Visualization, pp. 559566, 2005.
[42] T. Wischgoll and G. Scheuermann, "Detection and Visualization of Closed Streamlines in Planar Flows," IEEE Trans. Visualization and Computer Graphics, vol. 7, no. 2, pp. 165172, Apr.June 2001.
[43] C.M. Wittenbrink, A.T. Pang, and S.K. Lodha, "Glyphs for Visualizing Uncertainty in Vector Fields," IEEE Trans. Visualization and Computer Graphics, vol. 2, no. 3, pp. 266279, Sept. 1996.
[44] E. Zhang, K. Mischaikow, and G. Turk, "Vector Field Design on Surfaces," ACM Trans. Graphics, vol. 25, no. 4, pp. 12941326, 2006.