This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Mesh Segmentation with Concavity-Aware Fields
July 2012 (vol. 18 no. 7)
pp. 1125-1134
Oscar Kin-Chung Au, The City University of Hong Kong, Hong Kong
Youyi Zheng, The Hong Kong University of Science and Technology, Hong Kong
Menglin Chen, The Hong Kong University of Science and Technology, Hong Kong
Pengfei Xu, The Hong Kong University of Science and Technology, Hong Kong
Chiew-Lan Tai, The Hong Kong University of Science and Technology, Hong Kong
This paper presents a simple and efficient automatic mesh segmentation algorithm that solely exploits the shape concavity information. The method locates concave creases and seams using a set of concavity-sensitive scalar fields. These fields are computed by solving a Laplacian system with a novel concavity-sensitive weighting scheme. Isolines sampled from the concavity-aware fields naturally gather at concave seams, serving as good cutting boundary candidates. In addition, the fields provide sufficient information allowing efficient evaluation of the candidate cuts. We perform a summarization of all field gradient magnitudes to define a score for each isoline and employ a score-based greedy algorithm to select the best cuts. Extensive experiments and quantitative analysis have shown that the quality of our segmentations are better than or comparable with existing state-of-the-art more complex approaches.

[1] S. Katz and A. Tal, “Hierarchical Mesh Decomposition Using Fuzzy Clustering and Cuts,” ACM Trans. Graphics, vol. 22, no. 3, pp. 954-961, 2003.
[2] S. Katz, G. Leifman, and A. Tal, “Mesh Segmentation Using Feature Point and Core Extraction,” The Visual Computer, vol. 21, nos. 8-10, pp. 865-875, 2005.
[3] Y.-K. Lai, S.-M. Hu, R.R. Martin, and P.L. Rosin, “Rapid and Effective Segmentation of 3D Models Using Random Walks,” Computer Aided Geometric Design, vol. 26, no. 6, pp. 665-679, 2009.
[4] A. Golovinskiy and T. Funkhouser, “Randomized Cuts for 3D Mesh Analysis,” ACM Trans. Graphics, vol. 27, no. 5, 2008.
[5] E. Kalogerakis, A. Hertzmann, and K. Singh, “Learning 3D Mesh Segmentation and Labeling,” ACM Trans. Graphics, vol. 29, no. 3, 2010.
[6] X. Chen, A. Golovinskiy, and T. Funkhouser, “A Benchmark for 3D Mesh Segmentation,” ACM Trans. Graphics, vol. 28, no. 3, 2009.
[7] D. Hoffman, W. Richards, A. Pentl, J. Rubin, and J. Scheuhammer, “Parts of Recognition,” Cognition, vol. 18, pp. 65-96, 1984.
[8] D.D. Hoffman and M. Singh, “Salience of Visual Parts,” Cognition, vol. 63, no. 1, pp. 29-78, 1997.
[9] S. Shlafman, A. Tal, and S. Katz, “Metamorphosis of Polyhedral Surfaces Using Decomposition,” Proc. Eurographics, pp. 219-228, 2002.
[10] M. Attene, B. Falcidieno, and M. Spagnuolo, “Hierarchical Mesh Segmentation Based on Fitting Primitives,” The Visual Computer, vol. 22, no. 3, pp. 181-193, 2006.
[11] H. Zhang and R. Liu, “Mesh Segmentation via Recursive and Visually Salient Spectral Cuts,” Proc. of Vision, Modeling, and Visualization, pp. 429-436. 2005.
[12] R. Liu and H. Zhang, “Mesh Segmentation via Spectral Embedding and Contour Analysis,” Computer Graphics Forum, vol. 26, no. 3, pp. 385-394, 2007.
[13] H.-Y.S. Lin, L.H.-Y.M., and J.-C. Lin, “Visual Salience-Guided Mesh Decomposition,” IEEE Trans. Multimedia, vol. 9, no. 1, pp. 46-57, Jan. 2007.
[14] L. Shapira, A. Shamir, and D. Cohen-Or, “Consistent Mesh Partitioning and Skeletonisation Using the Shape Diameter Function,” The Visual Computer, vol. 24, no. 4, pp. 249-259, 2008.
[15] R. Liu, H. Zhang, A. Shamir, and D. Cohen-Or, “A Part-Aware Surface Metric for Shape Analysis,” Computer Graphics Forum, vol. 28, no. 2, pp. 397-406, 2009.
[16] M. Mortara, G. Patanè, M. Spagnuolo, B. Falcidieno, and J. Rossignac, “Plumber: A Method for a Multi-Scale Decomposition of 3D Shapes into Tubular Primitives and Bodies,” Proc. ACM Symp. Solid Modeling and Applications, pp. 339-344, 2004.
[17] D. Reniers and A. Telea, “Skeleton-Based Hierarchical Shape Segmentation,” SMI '07: Proc. IEEE Int'l Conf. Shape Modeling and Applications, pp. 179-188, 2007.
[18] M. Meng, Z. Ji, and L. Liu, “Sketching Mesh Segmentation Based on Feature Preserving Harmonic Field,” J. Computer-Aided Design & Computer Graphics, vol. 20, no. 9, pp. 1146-1152, 2008.
[19] J. Zhang, C. Wu, J. Cai, J. Zheng, and X. cheng Tai, “Mesh Snapping: Robust Interactivemesh Cutting Using Fast Geodesic Curvature Flow,” Computer Graphics Forum, vol. 29, no. 2, pp. 517-526, 2010.
[20] Y. Zheng and C.-L. Tai, “Mesh Decomposition with Cross-Boundary Brushes,” Computer Graphics Forum, vol. 29, no. 2, pp. 527-535, 2010.
[21] M. Desbrun, M. Meyer, P. Schröder, and A.H. Barr, “Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow,” Proc. SIGGRAPH, 1999.
[22] E. Kalogerakis, P. Simari, D. Nowrouzezahrai, and K. Singh, “Robust Statistical Estimation of Curvature on Discretized Surfaces,” Proc. Eurographics Symp. Geometry Processing, 2007.
[23] Y.-K. Lai, Q.-Y. Zhou, S.-M. Hu, J. Wallner, and H. Pottmann, “Robust Feature Classification and Editing,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 1, pp. 34-45, Jan./Feb. 2007.
[24] H. Zhang, A. Sheffer, D. Cohen-Or, Q. Zhou, O. van Kaick, and A. Tagliasacchi, “Deformation-Drive Shape Correspondence,” Computer Graphics Forum, vol. 27, no. 5, pp. 1431-1439, 2008.
[25] T. Davis, User Guide for CHOLMOD: A Sparse Cholesky Factorization and Modification Package, 2008.
[26] R. Zatzarinni, A. Tal, and A. Shamir, “Relief Analysis and Extraction,” Proc. ACM SIGGRAPH, pp. 136:1-136:9, 2009.
[27] M. Attene, M. Mortara, M. Spagnuolo, and B. Falcidieno, “Hierarchical Convex Approximation of 3D Shapes for Fast Region Selection,” Computer Graphics Forum, vol. 27, no. 5, pp. 1323-1332, 2008.

Index Terms:
Concavity-aware field, mesh segmentation, isolines.
Citation:
Oscar Kin-Chung Au, Youyi Zheng, Menglin Chen, Pengfei Xu, Chiew-Lan Tai, "Mesh Segmentation with Concavity-Aware Fields," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 7, pp. 1125-1134, July 2012, doi:10.1109/TVCG.2011.131
Usage of this product signifies your acceptance of the Terms of Use.