This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Velocity-Dependent Dynamic Curvature Gain for Redirected Walking
July 2012 (vol. 18 no. 7)
pp. 1041-1052
H. H. Bulthoff, Max Planck Inst. for Biol. Cybern., Tubingen, Germany
U. Kloos, Reutlingen Univ., Reutlingen, Germany
D. Engel, Max Planck Inst. for Biol. Cybern., Tubingen, Germany
J. L. Souman, Max Planck Inst. for Biol. Cybern., Tubingen, Germany
C. T. Neth, Max Planck Inst. for Biol. Cybern., Tubingen, Germany
B. J. Mohler, Max Planck Inst. for Biol. Cybern., Tubingen, Germany
Redirected walking techniques allow people to walk in a larger virtual space than the physical extents of the laboratory. We describe two experiments conducted to investigate human sensitivity to walking on a curved path and to validate a new redirected walking technique. In a psychophysical experiment, we found that sensitivity to walking on a curved path was significantly lower for slower walking speeds (radius of 10 m versus 22 m). In an applied study, we investigated the influence of a velocity-dependent dynamic gain controller and an avatar controller on the average distance that participants were able to freely walk before needing to be reoriented. The mean walked distance was significantly greater in the dynamic gain controller condition, as compared to the static controller (22 m versus 15 m). Our results demonstrate that perceptually motivated dynamic redirected walking techniques, in combination with reorientation techniques, allow for unaided exploration of a large virtual city model.

[1] F. Steinicke, G. Bruder, J. Jerald, H. Frenz, and M. Lappe, “Analyses of Human Sensitivity to Redirected Walking,” Proc. ACM Symp. Virtual Reality Software and Technology, pp. 149-156, 2008.
[2] S. Razzaque, Z. Kohn, and M.C. Whitton, “Redirected Walking,” Proc. EUROGRAPHICS, pp. 289-294, 2001.
[3] D. Engel, C. Curio, L. Tcheang, B.J. Mohler, and H.H. Bülthoff, “A Psychophysically Calibrated Controller for Navigating through Large Environments in a Limited Free-Walking Space,” Proc. ACM Symp. Virtual Reality Software and Technology, pp. 157-164, 2008.
[4] B. Williams, G. Narasimham, B. Rump, T.P. McNamara, T.H. Carr, J.J. Rieser, and B. Bodenheimer, “Exploring Large Virtual Environments with an HMD when Physical Space Is Limited,” Proc. Fourth Symp. Applied Perception in Graphics and Visualization (APGV '07), vol. 1, no. 212, pp. 41-48, 2007.
[5] B.J. Cratty and H.G. Williams, Perceptual Thresholds of Non-Visual Locomotion, Part II. Dept. of Physical Education, Univ. of California, 1966.
[6] F. Steinicke, G. Bruder, J. Jerald, H. Frenz, and M. Lappe, “Estimation of Detection Thresholds for Redirected Walking Techniques,” IEEE Trans. Visualization and Computer Graphics, vol. 16, no. 1, pp. 17-27, Jan./Feb. 2010.
[7] C.S. Kallie, P.R. Schrater, and G.E. Legge, “Variability in Stepping Direction Explains the Veering Behavior of Blind Walkers,” J. Experimental Psychology: Human Perception and Performance, vol. 33, no. 1, pp. 183-200, 2007.
[8] J.L. Souman, I. Frissen, M.N. Sreenivasa, and M.O. Ernst, “Walking Straight into Circles,” Current Biology, vol. 19, no. 18, pp. 1538-1542, Sept. 2009.
[9] B.J. Mohler, J.L. Campos, M.B. Weyel, and H.H. Bülthoff, “Gait Parameters while Walking in a Head-Mounted Display Virtual Environment and the Real World,” Proc. IPT-EGVE Symp., pp. 1-4, 2007.
[10] J.L. Souman, P.R. Giordano, I. Frissen, A. de Luca, and M.O. Ernst, “Making Virtual Walking Real: Perceptual Evaluation of a New Treadmill Control Algorithm,” ACM Trans. Applied Perception, vol. 7, no. 2, pp. 1-14, 2010.
[11] S. Streuber, S. De La Rosa, L. Trutoiu, H.H. Bülthoff, and B.J. Mohler, “Does Brief Exposure to a Self-Avatar Affect Common Human Behaviors in Immersive Virtual Environments?” Proc. Eurographics, pp. 1-4, 2009.
[12] F. Steinicke, G. Bruder, K.H. Hinrichs, J. Jerald, H. Frenz, and M. Lappe, “Real Walking through Virtual Environments by Redirection Techniques,” J. Virtual Reality and Broadcasting, vol. 6, no. 2, 2009.
[13] S. Razzaque, D. Swapp, M. Slater, M.C. Whitton, and A. Steed, “Redirected Walking in Place,” Proc. Workshop Virtual Environments, pp. 123-130, 2002.
[14] V. Interrante, B. Ries, and L. Anderson, “Seven League Boots: A New Metaphor for Augmented Locomotion through Moderately Large Scale Immersive Virtual Environments,” Proc. IEEE Symp. 3D User Interfaces, 2007.
[15] F. Steinicke, G. Bruder, T. Ropinski, and K.H. Hinrichs, “Moving towards Generally Applicable Redirected Walking,” Proc. IEEE Int'l Conf. Virtual Reality, pp. 15-24, 2008.
[16] E.A. Suma, S. Clark, and S.L. Finkelstein, “Exploiting Change Blindness to Expand Walkable Space in a Virtual Environment,” Proc. IEEE Virtual Reality Conf., pp. 305-306, 2010.
[17] E.A. Suma, S.L. Finkelstein, S. Clark, and Z. Wartell, “An Approach to Redirect Walking by Modifying Virtual World Geometry,” Proc. Workshop Perceptual Illusions in Virtual Environments, pp. 16-18, 2009.
[18] T.C. Peck, M.C. Whitton, and H. Fuchs, “Evaluation of Reorientation Techniques and Distractors for Walking in Large Virtual Environments,” IEEE Trans. Visualization and Computer Graphics, vol. 15, no. 3, pp. 383-394, May/June 2009.
[19] N. Sekiya, H. Nagasaki, H. Ito, and T. Ruruna, “The Invariant Relationship between Step Length and Step Rate during Free Walking,” J. Human Movement Studies, vol. 30, pp. 241-257, 1996.
[20] M.N. Sreenivasa, I. Frissen, J.L. Souman, and M.O. Ernst, “Walking along Curved Paths of Different Angles: The Relationship between Head and Trunk Turning,” Experimental Brain Research, vol. 191, no. 3, pp. 313-320, Nov. 2008.
[21] R.S. Kennedy, N.E. Lane, K.S. Berbaum, and M.G. Lilienthal, “Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness,” The Int'l J. Aviation Psychology, vol. 3, no. 3, pp. 203-220, 1993.
[22] F.A. Wichmann and N.J. Hill, “The Psychometric Function: I. Fitting, Sampling, and Goodness of Fit,” Perception and Psychophysics, vol. 63, no. 8, pp. 1313-1293, Nov. 2001.
[23] P. Terrier and Y. Schutz, “Variability of Gait Patterns during Unconstrained Walking Assessed by Satellite Positioning (GPS),” European J. Applied Physiology, vol. 90, nos. 5/6, pp. 554-561, Nov. 2003.
[24] P. Terrier and Y. Schutz, “How Useful Is Satellite Positioning System (GPS) to Track Gait Parameters? A Review,” J. Neuroeng. and Rehabilitation, vol. 2, p. 28, Jan. 2005.
[25] J.A. Ehrlich, “Simulator Sickness and HMD Configurations,” Proc. SPIE, vol. 3206, 1997.
[26] J. Hakkinen, T. Vuori, and M. Puhakka, “Postural Stability and Sickness Symptoms after HMD Use,” Proc. IEEE Int'l Conf. Systems, Man and Cybernetics, pp. 147-152, 2002.
[27] M.A. Mehlitz, “Aufbau Eines Medizinischen Virtual-Reality-Labors und Entwicklung eines VR-gestützten neuropsychologischen Testsystems mit einer präklinischen und klinischen Evaluationsstudie,” PhD dissertation, Georg-August-Universität zu Göttingen, 2004.
[28] J.E. Swan, A. Jones, E. Kolstad, M.A. Livingston, and H.S. Smallman, “Egocentric Depth Judgments in Optical, See-Through Augmented Reality,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 3, pp. 429-442, May 2007.
[29] J.M. Loomis, J.A. Da Silva, N. Fujita, and S.S. Fukusima, “Visual Space Perception and Visually Directed Action,” J. Experimental Psychology: Human Perception and Performance, vol. 18, no. 4, pp. 906-921, Nov. 1992.
[30] B.R. Kunz, L. Wouters, D. Smith, W.B. Thompson, and S.H. Creem-Regehr, “Revisiting the Effect of Quality of Graphics on Distance Judgments in Virtual Environments: A Comparison of Verbal Reports and Blind Walking,” Attention, Perception, and Psychophysics, vol. 71, no. 6, pp. 1284-1293, 2009.
[31] E.T. Hall, The Hidden Dimension. Doubleday, 1966.
[32] J. Llobera, B. Spanlang, G. Ruffini, and M. Slater, “Proxemics with Multiple Dynamic Characters in an Immersive Virtual Environment,” ACM Trans. Applied Perception, vol. 8, p. 3, 2010.
[33] J.N. Bailenson, J. Blascovich, A.C. Beall, and J.M. Loomis, “Interpersonal Distance in Immersive Virtual Environments,” Personality and Social Psychology Bull., vol. 29, no. 7, pp. 819-833, 2003.
[34] L.M. Wilcox, R.S. Allison, S. Elfassy, and C. Grelik, “Personal Space in Virtual Reality,” ACM Trans. Applied Perception, vol. 3, no. 4, pp. 412-428, Oct. 2006.
[35] H.H. Bülthoff, M. von der Heyde, H.-J. van Veen, H. Distler, and H.A. Mallot, “Virtual Tübingen Webpage,” http:/virtual. tuebingen.mpg.de, 2011.
[36] C.T. Neth, J.L. Souman, H.H. Bülthoff, U. Kloos, and B.J. Mohler, “The Effect of Walking Speed on the Sensitivity to Curved Walking in an Immersive Virtual Environment,” Proc. European Conf. Visual Perception, 2010.
[37] C.T. Neth, J.L. Souman, D. Engel, U. Kloos, and B.J. Mohler, “Velocity-Dependent Dynamic Curvature Gain for Redirected Walking,” Proc. Joint Virtual Reality Conf., 2010.

Index Terms:
psychology,avatars,gain control,gait analysis,virtual city model,velocity-dependent dynamic curvature gain,redirected walking techniques,virtual space,human walking sensitivity,curved path,psychophysical experiment,velocity-dependent dynamic gain controller,avatar controller,dynamic gain controller condition,static controller,reorientation techniques,Legged locomotion,Sensitivity,Trajectory,Virtual environments,Particle measurements,Atmospheric measurements,Games,avatars.,Virtual reality,redirected walking,virtual locomotion,curvature sensitivity
Citation:
H. H. Bulthoff, U. Kloos, D. Engel, J. L. Souman, C. T. Neth, B. J. Mohler, "Velocity-Dependent Dynamic Curvature Gain for Redirected Walking," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 7, pp. 1041-1052, July 2012, doi:10.1109/TVCG.2011.275
Usage of this product signifies your acceptance of the Terms of Use.