This Article 
 Bibliographic References 
 Add to: 
Topology Verification for Isosurface Extraction
June 2012 (vol. 18 no. 6)
pp. 952-965
R. M. Kirby, Sch. of Comput., Univ. of Utah, Salt Lake City, UT, USA
V. Pascucci, Sch. of Comput., Univ. of Utah, Salt Lake City, UT, USA
C. T. Silva, Sch. of Comput., Univ. of Utah, Salt Lake City, UT, USA
T. J. Peters, Dept. of Comput. Sci. & Eng., Univ. of Connecticut, Storrs, CT, USA
J. Tienry, LTCI, Telecom ParisTech, Paris, TX, USA
C. Scheidegger, AT&T Labs. - Res., Madison, NJ, USA
L. G. Nonato, Dept. de Matemdtica Aplic. e Estatistica, Univ. de Sao Paulo, Sao Carlos, Brazil
Tiago Etiene, Sch. of Comput., Univ. of Utah, Salt Lake City, UT, USA
The broad goals of verifiable visualization rely on correct algorithmic implementations. We extend a framework for verification of isosurfacing implementations to check topological properties. Specifically, we use stratified Morse theory and digital topology to design algorithms which verify topological invariants. Our extended framework reveals unexpected behavior and coding mistakes in popular publicly available isosurface codes.

[1] I. Babuska and J. Oden, “Verification and Validation in Computational Engineering and Science: Basic Concepts,” Computer Methods in Applied Mechanics and Eng., vol. 193, nos. 36-38, pp. 4057-4066, 2004.
[2] J. Bloomenthal, “Polygonization of Implicit Surfaces,” Computer Aided Geometric Design, vol. 5, no. 4, pp. 341-355, 1988.
[3] H. Carr and N. Max, “Subdivision Analysis of the Trilinear Interpolant,” IEEE Trans. Visualization and Computer Graphics, vol. 16, no. 4, pp. 533-547, July/Aug. 2010.
[4] H. Carr, T. Möller, and J. Snoeyink, “Artifacts Caused by Simplicial Subdivision,” IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 2, pp. 231-242, Mar./Apr. 2006.
[5] H. Carr and J. Snoeyink, “Representing Interpolant Topology for Contour Tree Computation,” Proc. Topology-Based Methods in Visualization II, pp. 59-73, 2009.
[6] H. Carr, J. Snoeyink, and U. Axen, “Computing Contour Trees in all Dimensions,” Computational Geometry: Theory and Applications, vol. 24, no. 2, pp. 75-94, 2003.
[7] L. Chen and Y. Rong, “Digital Topological Method for Computing Genus and the Betti Numbers,” Topology and its Applications, vol. 157, no. 12, pp. 1931-1936 2010, .
[8] E.V. Chernyaev, “Marching Cubes 33: Construction of Topologically Correct Isosurfaces,” Technical Report CN/95-17, 1995.
[9] P. Cignoni, F. Ganovelli, C. Montani, and R. Scopigno, “Reconstruction of Topologically Correct and Adaptive Trilinear Isosurfaces,” Computers and Graphics, vol. 24, pp. 399-418, 2000.
[10] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, “Stability of Persistence Diagrams,” J. Discrete and Computational Geometry, vol. 37, no. 1, pp. 103-120, 2007.
[11] T.K. Dey and J.A. Levine, “Delaunay Meshing of Isosurfaces,” Proc. IEEE Int'l Conf. Shape Modeling and Applications (SMI '07), pp. 241-250, 2007.
[12] C. Dietrich, C. Scheidegger, J. Schreiner, J. Comba, L. Nedel, and C. Silva, “Edge Transformations for Improving Mesh Quality of Marching Cubes,” IEEE Trans. Visualization and Computer Graphics, vol. 15, no. 1, pp. 150-159, Jan./Feb. 2008.
[13] H. Edelsbrunner and J.L. Harer, Computational Topology. American Mathematical Soc., 2010.
[14] H. Edelsbrunner and E.P. Mücke, “Simulation of Simplicity: A Technique to Cope with Degenerate Cases in Geometric Algorithms,” ACM Trans. Graphics, vol. 9, pp. 66-104, 1990.
[15] T. Etiene, C. Scheidegger, L.G. Nonato, R.M. Kirby, and C. Silva, “Verifiable Visualization for Isosurface Extraction,” IEEE Trans. Visualization and Computer Graphics, vol. 15, no. 6, pp. 1227-1234, Jan./Feb. 2009.
[16] A. Globus and S. Uselton, “Evaluation of Visualization Software,” ACM SIGGRAPH Computer Graphics, vol. 29, no. 2, pp. 41-44, 1995.
[17] M. Goresky and R. MacPherson, Stratified Morse Theory. Springer, 1988.
[18] C.-C. Ho, F.-C. Wu, B.-Y. Chen, Y.-Y. Chuangs, and M. Ouhyoungs, “Cubical Marching Squares: Adaptive Feature Preserving Surface Extraction from Volume Data,” Computer Graphics Forum, vol. 24, no. 3, pp. 537-545, 2005.
[19] R. Kirby and C. Silva, “The Need for Verifiable Visualization,” IEEE Computer Graphics and Applications, vol. 28, no. 5, pp. 78-83, Sept./Oct. 2008.
[20] T. Lewiner, “Personal Communication,” Mar. 2010.
[21] T. Lewiner, H. Lopes, A.W. Vieira, and G. Tavares, “Efficient Implementation of Marching Cubes' Cases with Topological Guarantees,” J. Graphics Tools, vol. 8, no. 2, pp. 1-15, 2003.
[22] A. Lopes and K. Brodlie, “Improving the Robustness and Accuracy of the Marching Cubes Algorithm for Isosurfacing,” IEEE Trans. Visualization and Computer Graphics, vol. 9, no. 1, pp. 16-29, Jan.-Mar. 2003.
[23] W. Lorensen and H. Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” ACM SIGGRAPH Computer Graphics, vol. 21, pp. 163-169, 1987.
[24] MathWorks “Matlab,”, Mar. 2011.
[25] R. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer, “Certifying Algorithms,” Computer Science Rev., 2010.
[26] C. Montani, R. Scateni, and R. Scopigno, “A Modified Look-Up Table for Implicit Disambiguation of Marching Cubes,” The Visual Computer, vol. 10, no. 6, pp. 353-355, Dec. 1994.
[27] J.R. Munkres, Topology, A First Course. Prentice-Hall, Inc., 1975.
[28] B.K. Natarajan, “On Generating Topologically Consistent Isosurfaces from Uniform Samples,” Visual Computer: Int'l J. Computer Graphics, vol. 11, no. 1, pp. 52-62, 1994.
[29] T.S. Newman and H. Yi, “A Survey of the Marching Cubes Algorithm,” Computers and Graphics, vol. 30, no. 5, pp. 854-879, 2006.
[30] G.M. Nielson, “On Marching Cubes,” IEEE Trans. Visualization and Computer Graphics, vol. 9, no. 3, pp. 283-297, July-Sept. 2003.
[31] G.M. Nielson and B. Hamann, “The Asymptotic Decider: Resolving the Ambiguity in Marching Cubes,” Proc. IEEE Second Conf. Visualization, pp. 83-91, 1991.
[32] V. Pascucci and K. Cole-McLaughlin, “Parallel Computation of the Topology of Level Sets,” Algorithmica, vol. 38, no. 1, pp. 249-268, 2003.
[33] J. Patera and V. Skala, “A Comparison of Fundamental Methods for ISO Surface Extraction,” Machine Graphics and Vision Int'l J., vol. 13, no. 4, pp. 329-343, 2004.
[34] S. Raman and R. Wenger, “Quality Isosurface Mesh Generation Using an Extended Marching Cubes Lookup Table,” Computer Graphics Forum, vol. 27, no. 3, pp. 791-798, 2008.
[35] T. Sakkalis, T.J. Peters, and J. Bisceglio, “Isotopic Approximations and Interval Solids,” Computer-Aided Design, vol. 36, no. 11, pp. 1089-1100, 2004.
[36] C. Scheidegger, T. Etiene, L.G. Nonato, and C. Silva, “Edge Flows: Stratified Morse Theory for Simple, Correct Isosurface Extraction,” technical report, Univ. of Utah, 2010.
[37] J. Schreiner, C. Scheidegger, and C. Silva, “High-Quality Extraction of Isosurfaces from Regular and Irregular Grids,” IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 5, pp. 1205-1212, Sept./Oct. 2006.
[38] W. Schroeder, K. Martin, and W. Lorensen, “An Object-Oriented Approach to 3D Graphics,” Visualization Toolkit, second ed. Prentice-Hall, 1998.
[39] P. Stelldinger, L.J. Latecki, and M. Siqueira, “Topological Equivalence between a 3D Object and the Reconstruction of Its Digital Image,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 1, pp. 126-140, Jan. 2007.
[40] P. Sutton, C. Hansen, H.-W. Shen, and D. Schikore, “A Case Study of Isosurface Extraction Algorithm Performance,” Proc. Data Visualization, pp. 259-268, 2000.
[41] A. van Gelder and J. Wilhelms, “Topological Considerations in Isosurface Generation,” ACM Trans. Graphics, vol. 13, no. 4, pp. 337-375, 1994.
[42] G.H. Weber, G. Scheuermann, H. Hagen, and B. Hamann, “Exploring Scalar Fields Using Critical Isovalues,” Proc. IEEE Visualization, pp. 171-178, 2002.
[43] L. Zhou and A. Pang, “Metrics and Visualization Tools for Surface Mesh Comparison,” Proc. SPIE: Visual Data Exploration and Analysis VIII, vol. 4302, pp. 99-110, 2001.

Index Terms:
Isosurfaces,Topology,Face,Level set,Software,Interpolation,Manifolds,topology.,Verifiable visualization,isosurface
R. M. Kirby, V. Pascucci, C. T. Silva, T. J. Peters, J. Tienry, C. Scheidegger, L. G. Nonato, Tiago Etiene, "Topology Verification for Isosurface Extraction," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 6, pp. 952-965, June 2012, doi:10.1109/TVCG.2011.109
Usage of this product signifies your acceptance of the Terms of Use.