
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
R. M. Kirby, V. Pascucci, C. T. Silva, T. J. Peters, J. Tienry, C. Scheidegger, L. G. Nonato, Tiago Etiene, "Topology Verification for Isosurface Extraction," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 6, pp. 952965, June, 2012.  
BibTex  x  
@article{ 10.1109/TVCG.2011.109, author = {R. M. Kirby and V. Pascucci and C. T. Silva and T. J. Peters and J. Tienry and C. Scheidegger and L. G. Nonato and Tiago Etiene}, title = {Topology Verification for Isosurface Extraction}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {18}, number = {6}, issn = {10772626}, year = {2012}, pages = {952965}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.109}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Topology Verification for Isosurface Extraction IS  6 SN  10772626 SP952 EP965 EPD  952965 A1  R. M. Kirby, A1  V. Pascucci, A1  C. T. Silva, A1  T. J. Peters, A1  J. Tienry, A1  C. Scheidegger, A1  L. G. Nonato, A1  Tiago Etiene, PY  2012 KW  Isosurfaces KW  Topology KW  Face KW  Level set KW  Software KW  Interpolation KW  Manifolds KW  topology. KW  Verifiable visualization KW  isosurface VL  18 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] I. Babuska and J. Oden, “Verification and Validation in Computational Engineering and Science: Basic Concepts,” Computer Methods in Applied Mechanics and Eng., vol. 193, nos. 3638, pp. 40574066, 2004.
[2] J. Bloomenthal, “Polygonization of Implicit Surfaces,” Computer Aided Geometric Design, vol. 5, no. 4, pp. 341355, 1988.
[3] H. Carr and N. Max, “Subdivision Analysis of the Trilinear Interpolant,” IEEE Trans. Visualization and Computer Graphics, vol. 16, no. 4, pp. 533547, July/Aug. 2010.
[4] H. Carr, T. Möller, and J. Snoeyink, “Artifacts Caused by Simplicial Subdivision,” IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 2, pp. 231242, Mar./Apr. 2006.
[5] H. Carr and J. Snoeyink, “Representing Interpolant Topology for Contour Tree Computation,” Proc. TopologyBased Methods in Visualization II, pp. 5973, 2009.
[6] H. Carr, J. Snoeyink, and U. Axen, “Computing Contour Trees in all Dimensions,” Computational Geometry: Theory and Applications, vol. 24, no. 2, pp. 7594, 2003.
[7] L. Chen and Y. Rong, “Digital Topological Method for Computing Genus and the Betti Numbers,” Topology and its Applications, vol. 157, no. 12, pp. 19311936 2010, http://dx.doi.org/10.1016j.topol.2010.04.006 .
[8] E.V. Chernyaev, “Marching Cubes 33: Construction of Topologically Correct Isosurfaces,” Technical Report CN/9517, 1995.
[9] P. Cignoni, F. Ganovelli, C. Montani, and R. Scopigno, “Reconstruction of Topologically Correct and Adaptive Trilinear Isosurfaces,” Computers and Graphics, vol. 24, pp. 399418, 2000.
[10] D. CohenSteiner, H. Edelsbrunner, and J. Harer, “Stability of Persistence Diagrams,” J. Discrete and Computational Geometry, vol. 37, no. 1, pp. 103120, 2007.
[11] T.K. Dey and J.A. Levine, “Delaunay Meshing of Isosurfaces,” Proc. IEEE Int'l Conf. Shape Modeling and Applications (SMI '07), pp. 241250, 2007.
[12] C. Dietrich, C. Scheidegger, J. Schreiner, J. Comba, L. Nedel, and C. Silva, “Edge Transformations for Improving Mesh Quality of Marching Cubes,” IEEE Trans. Visualization and Computer Graphics, vol. 15, no. 1, pp. 150159, Jan./Feb. 2008.
[13] H. Edelsbrunner and J.L. Harer, Computational Topology. American Mathematical Soc., 2010.
[14] H. Edelsbrunner and E.P. Mücke, “Simulation of Simplicity: A Technique to Cope with Degenerate Cases in Geometric Algorithms,” ACM Trans. Graphics, vol. 9, pp. 66104, 1990.
[15] T. Etiene, C. Scheidegger, L.G. Nonato, R.M. Kirby, and C. Silva, “Verifiable Visualization for Isosurface Extraction,” IEEE Trans. Visualization and Computer Graphics, vol. 15, no. 6, pp. 12271234, Jan./Feb. 2009.
[16] A. Globus and S. Uselton, “Evaluation of Visualization Software,” ACM SIGGRAPH Computer Graphics, vol. 29, no. 2, pp. 4144, 1995.
[17] M. Goresky and R. MacPherson, Stratified Morse Theory. Springer, 1988.
[18] C.C. Ho, F.C. Wu, B.Y. Chen, Y.Y. Chuangs, and M. Ouhyoungs, “Cubical Marching Squares: Adaptive Feature Preserving Surface Extraction from Volume Data,” Computer Graphics Forum, vol. 24, no. 3, pp. 537545, 2005.
[19] R. Kirby and C. Silva, “The Need for Verifiable Visualization,” IEEE Computer Graphics and Applications, vol. 28, no. 5, pp. 7883, Sept./Oct. 2008.
[20] T. Lewiner, “Personal Communication,” Mar. 2010.
[21] T. Lewiner, H. Lopes, A.W. Vieira, and G. Tavares, “Efficient Implementation of Marching Cubes' Cases with Topological Guarantees,” J. Graphics Tools, vol. 8, no. 2, pp. 115, 2003.
[22] A. Lopes and K. Brodlie, “Improving the Robustness and Accuracy of the Marching Cubes Algorithm for Isosurfacing,” IEEE Trans. Visualization and Computer Graphics, vol. 9, no. 1, pp. 1629, Jan.Mar. 2003.
[23] W. Lorensen and H. Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” ACM SIGGRAPH Computer Graphics, vol. 21, pp. 163169, 1987.
[24] MathWorks “Matlab,” http://www.mathworks.com/productsmatlab/, Mar. 2011.
[25] R. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer, “Certifying Algorithms,” Computer Science Rev., 2010.
[26] C. Montani, R. Scateni, and R. Scopigno, “A Modified LookUp Table for Implicit Disambiguation of Marching Cubes,” The Visual Computer, vol. 10, no. 6, pp. 353355, Dec. 1994.
[27] J.R. Munkres, Topology, A First Course. PrenticeHall, Inc., 1975.
[28] B.K. Natarajan, “On Generating Topologically Consistent Isosurfaces from Uniform Samples,” Visual Computer: Int'l J. Computer Graphics, vol. 11, no. 1, pp. 5262, 1994.
[29] T.S. Newman and H. Yi, “A Survey of the Marching Cubes Algorithm,” Computers and Graphics, vol. 30, no. 5, pp. 854879, 2006.
[30] G.M. Nielson, “On Marching Cubes,” IEEE Trans. Visualization and Computer Graphics, vol. 9, no. 3, pp. 283297, JulySept. 2003.
[31] G.M. Nielson and B. Hamann, “The Asymptotic Decider: Resolving the Ambiguity in Marching Cubes,” Proc. IEEE Second Conf. Visualization, pp. 8391, 1991.
[32] V. Pascucci and K. ColeMcLaughlin, “Parallel Computation of the Topology of Level Sets,” Algorithmica, vol. 38, no. 1, pp. 249268, 2003.
[33] J. Patera and V. Skala, “A Comparison of Fundamental Methods for ISO Surface Extraction,” Machine Graphics and Vision Int'l J., vol. 13, no. 4, pp. 329343, 2004.
[34] S. Raman and R. Wenger, “Quality Isosurface Mesh Generation Using an Extended Marching Cubes Lookup Table,” Computer Graphics Forum, vol. 27, no. 3, pp. 791798, 2008.
[35] T. Sakkalis, T.J. Peters, and J. Bisceglio, “Isotopic Approximations and Interval Solids,” ComputerAided Design, vol. 36, no. 11, pp. 10891100, 2004.
[36] C. Scheidegger, T. Etiene, L.G. Nonato, and C. Silva, “Edge Flows: Stratified Morse Theory for Simple, Correct Isosurface Extraction,” technical report, Univ. of Utah, 2010.
[37] J. Schreiner, C. Scheidegger, and C. Silva, “HighQuality Extraction of Isosurfaces from Regular and Irregular Grids,” IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 5, pp. 12051212, Sept./Oct. 2006.
[38] W. Schroeder, K. Martin, and W. Lorensen, “An ObjectOriented Approach to 3D Graphics,” Visualization Toolkit, second ed. PrenticeHall, 1998.
[39] P. Stelldinger, L.J. Latecki, and M. Siqueira, “Topological Equivalence between a 3D Object and the Reconstruction of Its Digital Image,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 1, pp. 126140, Jan. 2007.
[40] P. Sutton, C. Hansen, H.W. Shen, and D. Schikore, “A Case Study of Isosurface Extraction Algorithm Performance,” Proc. Data Visualization, pp. 259268, 2000.
[41] A. van Gelder and J. Wilhelms, “Topological Considerations in Isosurface Generation,” ACM Trans. Graphics, vol. 13, no. 4, pp. 337375, 1994.
[42] G.H. Weber, G. Scheuermann, H. Hagen, and B. Hamann, “Exploring Scalar Fields Using Critical Isovalues,” Proc. IEEE Visualization, pp. 171178, 2002.
[43] L. Zhou and A. Pang, “Metrics and Visualization Tools for Surface Mesh Comparison,” Proc. SPIE: Visual Data Exploration and Analysis VIII, vol. 4302, pp. 99110, 2001.