
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Andrzej Szymczak, Eugene Zhang, "Robust Morse Decompositions of Piecewise Constant Vector Fields," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 6, pp. 938951, June, 2012.  
BibTex  x  
@article{ 10.1109/TVCG.2011.88, author = {Andrzej Szymczak and Eugene Zhang}, title = {Robust Morse Decompositions of Piecewise Constant Vector Fields}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {18}, number = {6}, issn = {10772626}, year = {2012}, pages = {938951}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.88}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Robust Morse Decompositions of Piecewise Constant Vector Fields IS  6 SN  10772626 SP938 EP951 EPD  938951 A1  Andrzej Szymczak, A1  Eugene Zhang, PY  2012 KW  Morse decomposition KW  vector field topology. VL  18 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] E. Boczko, W.D. Kalies, and K. Mischaikow, “Polygonal Approximation of Flows,” Topology and Its Applications, vol. 154, no. 13, pp. 25012520, 2007.
[2] P.T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci, “A MultiResolution Data Structure for 2Dimensional Morse Functions,” Proc. IEEE 14th Visualization (VIS '03), pp. 139146, 2003.
[3] J. Chai, Y. Zhao, W. Guo, and Z. Tang, “A Texture Method for Visualization of Electromagnetic Vector Field,” Proc. Sixth Int'l Conf. Electrical Machines and Systems (ICEMS), vol. 2, pp. 805808, 2003.
[4] G. Chen, Q. Deng, A. Szymczak, R.S. Laramee, and E. Zhang, “Morse Set Classification and Hierarchical Refinement Using Conley Index,” IEEE Trans. Visualization and Computer Graphics, vol. 18, no. 5, pp. 767782, May 2012.
[5] G. Chen, K. Mischaikow, R.S. Laramee, P. Pilarczyk, and E. Zhang, “Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 4, pp. 769785, July/Aug. 2007.
[6] G. Chen, K. Mischaikow, R.S. Laramee, and E. Zhang, “Efficient Morse Decompositions of Vector Fields,” IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 4, pp. 848862, July/Aug. 2008.
[7] C. Conley, Isolated Invariant Sets and Morse Index. American Mathematical Soc., 1978.
[8] E. Early, “On the Euler Characteristic,” The MIT Undergraduate J. Math., vol. 1, pp. 3748, 1999.
[9] H. Edelsbrunner, J. Harer, and A. Zomorodian, “Hierarchical Morse Complexes for Piecewise Linear 2Manifolds,” Proc. 17th Ann. Symp. Computational Geometry (SCG '01), pp. 7079, 2001.
[10] R. Forman, “Combinatorial Vector Fields and Dynamical Systems,” Mathematische Zeitschrift, vol. 228, pp. 629681, 1998.
[11] L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings: Volume 4 of Topological Fixed Point Theory and Its Applications, second ed. Springer, 2006.
[12] J.L. Helman and L. Hesselink, “Representation and Display of Vector Field Topology in Fluid Flow Data Sets,” Computer, vol. 22, no. 8, pp. 2736, Aug. 1989.
[13] J.L. Helman and L. Hesselink, “Visualizing Vector Field Topology in Fluid Flows,” IEEE Computer Graphics and Applications, vol. 11, no. 3, pp. 3646, May 1991.
[14] T. Kaczynski and M. Mrozek, “Conley Index for Discrete Multivalued Dynamical Systems,” Topology and Its Applications, vol. 65, pp. 8396, 1997.
[15] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems: Encyclopedia of Mathematics and Its Applications. Cambridge Univ. Press, 1995.
[16] R.S. Laramee, C. Garth, H. Doleisch, J. Schneider, H. Hauser, and H. Hagen, “Visual Analysis and Exploration of Fluid Flow in a Cooling Jacket,” Proc. IEEE Visualization, pp. 623630, 2005.
[17] R.S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F.H. Post, and D. Weiskopf, “The State of the Art in Flow Visualization: Dense and TextureBased Techniques,” Computer Graphics Forum, vol. 23, no. 2, pp. 203221, 2004.
[18] R.S. Laramee, H. Hauser, L. Zhao, and F.H. Post, “TopologyBased Flow Visualization, the State of the Art,” Proc. TopologyBased Methods in Visualization (TopoInVis '05), pp. 119, 2007.
[19] R.S. Laramee, J.J. van Wijk, B. Jobard, and H. Hauser, “ISA and IBFVS: Image SpaceBased Visualization of Flow on Surfaces,” IEEE Trans. Visualization and Computer Graphics, vol. 10, no. 6, pp. 637648, Nov./Dec. 2004.
[20] R.S. Laramee, D. Weiskopf, J. Schneider, and H. Hauser, “Investigating Swirl and Tumble Flow with a Comparison of Visualization Techniques,” Proc. IEEE Visualization, pp. 5158, 2004.
[21] P. Lindstrom and V. Pascucci, “Visualization of Large Terrains Made Easy,” Proc. IEEE Visualization, pp. 363371, 2001.
[22] E.N. Lorenz, “Deterministic NonPeriodic Flow,” J. Atmospheric Science, vol. 20, pp. 130141, 1963.
[23] R.P. McGehee and T. Wiandt, “Conley Decomposition for Closed Relations,” J. Difference Equations and Applications, vol. 12, no. 1, pp. 147, 2006.
[24] T. McLoughlin, R.S. Laramee, R. Peikert, F.H. Post, and M. Chen, “Over Two Decades of IntegrationBased, Geometric Flow Visualization,” Proc. Eurographics, pp. 7392, 2009.
[25] R. Mehran, B.E. Moore, and M. Shah, “A Streakline Representation of Flow in Crowded Scenes,” Proc. 11th European Conf. Computer Vision (ECCV '10), pp. 439452, 2010.
[26] K. Mischaikow and M. Mrozek, “Chaos in the Lorenz Equations: A ComputerAssisted Proof,” Bull. Am. Math. Soc., vol. 32, pp. 6672, 1995.
[27] K. Mischaikow, M. Mrozek, and A. Szymczak, “Chaos in the Lorenz Equations: A Computer Assisted Proof. Part III: The Classical Parameter Values,” J. Differential Equations, vol. 169, no. 1, pp. 1756, 2001.
[28] M. Mrozek, “Index Pairs and the Fixed Point Index for Semidynamical Systems with Discrete Time,” Fundamental Mathematicae, vol. 133, pp. 177192, 1989.
[29] M. Mrozek, “A Cohomological Index of Conley Type for Multivalued Admissible Flows,” J. Differential Equations, vol. 84, pp. 1551, 1990.
[30] M. Otto, T. Germer, H.C. Hege, and H. Theisel, “Uncertain 2D Vector Field Topology,” Computer Graphics Forum, vol. 29, no. 2, pp. 347356, 2010.
[31] R. Panton, Incompressible Flow. John Wiley & Sons, 1984.
[32] J. Reininghaus, C. Lowen, and I. Hotz, “Fast Combinatorial Vector Field Topology,” IEEE Trans. Visualization and Computer Graphics, vol. pp, no. 99, p. 1, 2010.
[33] E.H. Spanier, Algebraic Topology. Springer, 1966.
[34] A. Szymczak, “Stable Morse Decompositions for Piecewise Constant Vector Fields on Surfaces,” Computer Graphics Forum, to appear, 2011.
[35] R. Tarjan, “DepthFirst Search and Linear Graph Algorithms,” SIAM J. Computing, vol. 1, no. 2, pp. 146160, 1972.
[36] H. Theisel and T. Weinkauf, “GridIndependent Detection of Closed Stream Lines in 2D Vector Fields,” Proc. Conf. Vision, Modeling and Visualization (VMV '04), pp. 421428, 2004.
[37] X. Tricoche, C. Garth, and G. Scheuermann, “Fast and Robust Extraction of Separation Line Features,” Proc. Scientific Visualization: The Visual Extraction of Knowledge from Data, pp. 249263, 2006.
[38] X. Tricoche, G. Scheuermann, and H. Hagen, “Higher Order Singularities in Piecewise Linear Vector Fields,” Proc. IMA Conf. Math. Surfaces, pp. 99113, 2000.
[39] X. Tricoche, G. Scheuermann, and H. Hagen, “A Topology Simplification Method for 2D Vector Fields,” Proc. Visualization, pp. 359366, 2000.
[40] T. Wischgoll and G. Scheuermann, “Detection and Visualization of Planar Closed Streamline,” IEEE Trans. Visualization and Computer Graphics, vol. 7, no. 2, pp. 165172, Apr.June 2001.
[41] E. Zhang, K. Mischaikow, and G. Turk, “Vector Field Design on Surfaces,” ACM Trans. Graphics, vol. 25, no. 4, pp. 12941326, 2006.