
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
ShiQing Xin, Ying He, ChiWing Fu, "Efficiently Computing Exact Geodesic Loops within Finite Steps," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 6, pp. 879889, June, 2012.  
BibTex  x  
@article{ 10.1109/TVCG.2011.119, author = {ShiQing Xin and Ying He and ChiWing Fu}, title = {Efficiently Computing Exact Geodesic Loops within Finite Steps}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {18}, number = {6}, issn = {10772626}, year = {2012}, pages = {879889}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.119}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Efficiently Computing Exact Geodesic Loops within Finite Steps IS  6 SN  10772626 SP879 EP889 EPD  879889 A1  ShiQing Xin, A1  Ying He, A1  ChiWing Fu, PY  2012 KW  Discrete geodesic KW  geodesic loop KW  triangular mesh. VL  18 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] H. Lee, Y. Tong, and M. Desbrun, “GeodesicsBased OnetoOne Parameterization of 3D Triangle Meshes,” IEEE Multimedia, vol. 12, no. 1, pp. 2733, Jan. 2005.
[2] G. Peyré and L.D. Cohen, “Geodesic Remeshing Using Front Propagation,” Int'l J. Computer Vision, vol. 69, no. 1, pp. 145156, 2006.
[3] Q.X. Huang, B. Adams, M. Wicke, and L.J. Guibas, “NonRigid Registration under Isometric Deformations,” SGP '08: Proc. Sixth Symp. Geometry Processing, pp. 14491457, 2008.
[4] P.V. Sander, Z.J. Wood, S.J. Gortler, J. Snyder, and H. Hoppe, “MultiChart Geometry Images,” SGP '03: Proc. Eurographics/ACM SIGGRAPH Symp. Geometry Processing, pp. 146155, 2003.
[5] K. Zhou, J. Synder, B. Guo, and H.Y. Shum, “IsoCharts: Stretchdriven Mesh Parameterization Using Spectral Analysis,” SGP '04: Proc. Eurographics/ACM SIGGRAPH Symp. Geometry Processing, pp. 4554, 2004.
[6] J. Zhang, C. Wu, J. Cai, J. Zheng, and X.C. Tai, “Mesh Snapping: Robust Interactive Mesh Cutting Using Fast Geodesic Curvature Flow,” Computer Graphics Forum, vol. 29, no. 2, pp. 517526, 2010.
[7] M. Sharir and A. Schorr, “On Shortest Paths in Polyhedral Spaces,” SIAM J. Computing, vol. 15, no. 1, pp. 193215, 1986.
[8] J.S.B. Mitchell, D.M. Mount, and C.H. Papadimitriou, “The Discrete Geodesic Problem,” SIAM J. Computing, vol. 16, no. 4, pp. 647668, 1987.
[9] S.Q. Xin and G.J. Wang, “Improving Chen and Han's Algorithm on the Discrete Geodesic Problem,” ACM Trans. Graphics, vol. 28, no. 4, pp. 18, 2009.
[10] R. Bott, “On the Iteration of Closed Geodesics and the Sturm Intersection Theory,” Comm. Pure and Applied Math., vol. 9, no. 2, pp. 171206, 1956.
[11] M. Freedman, J. Hass, and P. Scott, “Closed Geodesics on Surfaces,” Bull. London Math. Soc., vol. 14, pp. 385391, 1982.
[12] M. Jin, F. Luo, S.T. Yau, and X. Gu, “Computing Geodesic Spectra of Surfaces,” Proc. ACM Symp. Solid and Physical Modeling, pp. 387393, 2007.
[13] F. Hétroy and D. Attali, “From a Closed Piecewise Geodesic to a Constriction on a Closed Triangulated Surface,” PG '03: Proc. 11th Pacific Conf. Computer Graphics and Applications, p. 394, 2003.
[14] D. Reniers and A. Telea, “PartType Segmentation of Articulated VoxelShapes Using the Junction Rule,” Proc. Pacific Graphics, 2008.
[15] M. Dixon, N. Jacobs, and R. Pless, “Finding Minimal Parameterizations of Cylindrical Image Manifolds,” CVPRW '06: Proc. Conf. Computer Vision and Pattern Recognition Workshop, p. 192, 2006.
[16] T.K. Dey and S. Guha, “Transforming Curves on Surfaces,” J. Computer and System Sciences, vol. 58, pp. 297325, 1999.
[17] X. Yin, M. Jin, and X. Gu, “Computing Shortest Cycles Using Universal Covering Space,” The Visual Computer, vol. 23, no. 12, pp. 9991004, 2007.
[18] L. Fan, L. Liu, and K. Liu, “Paint Mesh Cutting,” Computer Graphics Forum, vol. 30, no. 2, pp. 603612, 2011.
[19] C. Wu and X. Tai, “A Level Set Formulation of Geodesic Curvature Flow on Simplicial Surfaces,” IEEE Trans. Visualization and Computer Graphics, vol. 16, no. 4, pp. 647662, July/Aug. 2010.
[20] J. Chen and Y. Han, “Shortest Paths on a Polyhedron,” SCG '90: Proc. Sixth Ann. Symp. Computational Geometry, pp. 360369, 1990.
[21] V. Surazhsky, T. Surazhsky, D. Kirsanov, S.J. Gortler, and H. Hoppe, “Fast Exact and Approximate Geodesics on Meshes,” ACM Trans. Graphics, vol. 24, no. 3, pp. 553560, 2005.
[22] K. Polthier and M. Schmies, “Straightest Geodesics on Polyhedral Surfaces,” Mathematical Visualization, p. 391, Springer Verlag, 1998.
[23] K. Polthier and M. Schmies, “Geodesic Flow on Polyhedral Surfaces,” Proc. EurographicsIEEE Symp. Scientific Visualization, pp. 179188, 1999.
[24] S.Q. Xin and G.J. Wang, “Efficiently Determining a Locally Exact Shortest Path on Polyhedral Surfaces,” ComputerAided Design, vol. 39, no. 12, pp. 10811090, 2007.
[25] R. Kimmel and J.A. Sethian, “Computing Geodesic Paths on Manifolds,” Proc. Nat'l Academy of Sciences of USA, vol. 95, pp. 84318435, 1998.
[26] S. HarPeled, “Approximate Shortest paths and Geodesic Diameter on a Convex Polytope in Three Dimensions,” Discrete and Computational Geometry, vol. 21, no. 2, pp. 217231, 1999.
[27] P.K. Agarwal, S. HarPeled, and M. Karia, “Computing Approximate Shortest Paths on Convex Polytopes,” Proc. Symp. Computational Geometry, pp. 270279, 2000.
[28] A. Spira and R. Kimmel, “Geodesic Curvature Flow on Parametric Surfaces,” Proc. Curve and Surface Design, pp. 365373, 2002.
[29] P. DiazGutierrez, D. Eppstein, and M. Gopi, “Curvature Aware Fundamental Cycles,” Computer Graphics Forum, vol. 28, no. 7, pp. 20152024, 2009.
[30] W. Zeng, M. Jin, F. Luo, and X. Gu, “Canonical Homotopy Class Representative Using Hyperbolic Structure,” Proc. IEEE Int'l Conf. Shape Modeling and Applications, 2009.
[31] W. Zeng, Y. He, J. Xia, X. Gu, and H. Qin, “${\rm C}^\infty$ Smooth Freeform Surfaces over Hyperbolic Domains,” SPM '09: Proc. SIAM/ACM Joint Conf. Geometric and Physical Modeling, pp. 367372, 2009.
[32] J. Zhang, J. Zheng, and J. Cai, “Interactive Mesh Cutting Using Constrained Random Walks,” IEEE Trans. Visualization and Computer Graphics, vol. 17, no. 3, pp. 357367, Mar. 2011.
[33] Y. Zheng and C.L. Tai, “Mesh Decomposition with CrossBoundary Brushes,” Computer Graphics Forum, vol. 29, no. 2, pp. 527535, 2010.
[34] A. Golovinskiy and T. Funkhouser, “Randomized Cuts for 3D Mesh Analysis,” Proc. ACM SIGGRAPH ASIA Papers, vol. 27, Dec. 2008.
[35] L.J. Guibas and J. Hershberger, “Optimal Shortest Path Queries in a Simple Polygon,” SCG '87: Proc. Third Ann. Symp. Computational Geometry, pp. 5063, 1987.
[36] S. Kakutani, “Ein Beweis des ${\rm s}{\ddot{a}}$ tzes Von Edelheit ${\ddot{u}}$ ber Konvexe Mengen,” Proc. Imp. Acad. Tokyo 13, pp. 9394, 1937.
[37] M. Jin, F. Luo, and X.D. Gu, “Computing General Geometric Structures on Surfaces Using Ricci Flow,” ComputerAided Design, vol. 39, no. 8, pp. 663675, 2007.
[38] E.C. de Verdière and F. Lazarus, “Optimal System of Loops on an Orientable Surface,” Proc. 43rd Symp. Foundations of Computer Science, pp. 627636, 2002.