
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Guoning Chen, Qingqing Deng, A. Szymczak, R. S. Laramee, E. Zhang, "Morse Set Classification and Hierarchical Refinement Using Conley Index," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 5, pp. 767782, May, 2012.  
BibTex  x  
@article{ 10.1109/TVCG.2011.107, author = { Guoning Chen and Qingqing Deng and A. Szymczak and R. S. Laramee and E. Zhang}, title = {Morse Set Classification and Hierarchical Refinement Using Conley Index}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {18}, number = {5}, issn = {10772626}, year = {2012}, pages = {767782}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.107}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Morse Set Classification and Hierarchical Refinement Using Conley Index IS  5 SN  10772626 SP767 EP782 EPD  767782 A1  Guoning Chen, A1  Qingqing Deng, A1  A. Szymczak, A1  R. S. Laramee, A1  E. Zhang, PY  2012 KW  vectors KW  data visualisation KW  graph theory KW  mathematics computing KW  numerical stability KW  pattern classification KW  set theory KW  topology KW  realworld simulation data KW  Morse set classification KW  hierarchical refinement KW  Conley index KW  Morse decomposition KW  vector field KW  numerically stable topological representation KW  Morse connection graph KW  flow combinatorialization graph KW  Poincare index KW  Betti numbers KW  visualization technique KW  synthetic data KW  Indexes KW  Topology KW  Orbits KW  Approximation methods KW  Upper bound KW  Trajectory KW  Electrocardiography KW  hierarchical refinement. KW  Morse decomposition KW  vector field topology KW  upper bound of Conley index KW  topology refinement VL  18 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] G. Chen, K. Mischaikow, R.S. Laramee, P. Pilarczyk, and E. Zhang, "Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition," IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 4, pp. 769785, July/Aug. 2007.
[2] G. Chen, K. Mischaikow, R.S. Laramee, and E. Zhang, "Efficient Morse Decompositions of Vector Fields," IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 4, pp. 848862, July/Aug. 2008.
[3] C. Conley, "Isolated Invariant Sets and the Morse Index," CMBS Regional Conf. Series in Math., vol. 38, 1978.
[4] W. de Leeuw and R. van Liere, "Visualization of Global Flow Structures Using Multiple Levels of Topology," Proc. Symp. Data Visualization '99 (VisSym '99), pp. 4552, May 1999.
[5] W. de Leeuw and R. van Liere, "MultiLevel Topology for Flow Visualization," Computers and Graphics, vol. 24, no. 3, pp. 325331, June 2000.
[6] W. de Leeuw and R. van Liere, "Collapsing Flow Topology Using Area Metrics," Proc. IEEE Visualization '99, D. Ebert, M. Gross, and B. Hamann, eds., pp. 349354, 1999.
[7] A. Dold, Lectures on Algebraic Topology. SpringerVerlag, 1980.
[8] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, "MorseSmale Complexes for Piecewise Linear 3Manifolds," SCG '03: Proc. 19th Ann. Symp. Computational Geometry, pp. 361370, 2003.
[9] H. Edelsbrunner, J. Harer, and A. Zomorodian, "Hierarchical Morse Complexes for Piecewise Linear 2Manifolds," SCG '01: Proc. 17th Ann. Symp. Computational Geometry, pp. 7079, 2001.
[10] R. Forman, "Combinatorial Vector Fields and Dynamical Systems," Mathematische Zeitschrift, vol. 228, pp. 629681, 1998.
[11] C. Garth, R.S. Laramee, X. Tricoche, J. Schneider, and H. Hagen, "Extraction and Visualization of Swirl and Tumble Motion from Engine Simulation Data," TopologyBased Methods in Visualization, Math. and Visualization, H. Hauser, H. Hagen, and H. Theisel, eds., pp. 121135, Springer, 2007.
[12] A. Gyulassy, P.T. Bremer, B. Hamann, and V. Pascucci, "A Practical Approach to MorseSmale Complex Computation: Scalability and Generality," IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 6, pp. 16191626, Nov./Dec. 2008.
[13] A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann, "Efficient Computation of MorseSmale Complexes for ThreeDimensional Scalar Functions," IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 6, pp. 14401447, Nov./Dec. 2007.
[14] J.L. Helman and L. Hesselink, "Representation and Display of Vector Field Topology in Fluid Flow Data Sets," Computer, vol. 22, no. 8, pp. 2736, Aug. 1989.
[15] T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational Homology, Vol. 157 of Applied Mathematical Sciences, Springer, 2004.
[16] W.D. Kalies, K. Mischaikow, and R.C.A.M. VanderVorst, "An Algorithmic Approach to Chain Recurrence," Foundations of Computational Math., vol. 5, no. 4, pp. 409449, 2005.
[17] R. Laramee, H. Hauser, L. Zhao, and F.H. Post, "Topology Based Flow Visualization: The State of The Art," TopologyBased Methods in Visualization, pp. 119, Springer, 2007.
[18] R.S. Laramee, C. Garth, H. Doleisch, J. Schneider, H. Hauser, and H. Hagen, "Visual Analysis and Exploration of Fluid Flow in a Cooling Jacket," Proc. IEEE Visualization, pp. 623630, 2005.
[19] R.S. Laramee, H. Hauser, H. Doleisch, F.H. Post, B. Vrolijk, and D. Weiskopf, "The State of the Art in Flow Visualization: Dense and TextureBased Techniques," Computer Graphics Forum, vol. 23, no. 2, pp. 203221, June 2004.
[20] R.S. Laramee, D. Weiskopf, J. Schneider, and H. Hauser, "Investigating Swirl and Tumble Flow with a Comparison of Visualization Techniques," Proc. IEEE Visualization '04, pp. 5158, 2004.
[21] M. Mrozek, "Index Pairs and the Fixed Point Index for SemiDynamical Systems with Discrete Time," Fundamentals of Math., vol. 133, pp. 178192, 1988.
[22] M. Mrozek, "Leray Functor and Cohomological Conley Index for Discrete Dynamical Systems," Trans. Am. Math. Soc., vol. 318, pp. 149178, 1990.
[23] K. Polthier and E. Preuß, "Identifying Vector Fields Singularities Using a Discrete Hodge Decomposition," Math. Visualization III, H.C. Hege, and K. Polthier, eds., pp. 112134, Springer, 2003.
[24] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing. Cambridge Univ. Press, 1992.
[25] J. Reininghaus, C. Lowen, and I. Hotz, "Fast Combinatorial Vector Field Topology," IEEE Trans. Visualization and Computer Graphics, vol. 17, no. 10, pp. 14331443, Oct. 2011.
[26] G. Scheuermann, H. Hagen, H. Krüger, M. Menzel, and A. Rockwood, "Visualization of Higher Order Singularities in Vector Fields," Proc. IEEE Visualization '97, pp. 6774, Oct. 1997.
[27] G. Scheuermann, H. Krüger, M. Menzel, and A.P. Rockwood, "Visualizing Nonlinear Vector Field Topology," IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 2, pp. 109116, Apr. 1998.
[28] A. Szymczak, "Index Pairs: From Dynamics to Combinatorics and Back," PhD thesis, Georgia Inst. of Tech nology, 1999.
[29] A. Szymczak and E. Zhang, "Robust Morse Decompositions of Piecewise Constant Vector Fields," IEEE Trans. Visualization and Computer Graphics, to Appear, 2011.
[30] H. Theisel, C. Rössl, and H.P. Seidel, "Combining Topological Simplification and Topology Preserving Compression for 2D Vector Fields," Proc. Pacific Conf. Computer Graphics and Applications, pp.419423, 2003.
[31] H. Theisel, C. Rössl, and H.P. Seidel, "Compression of 2D Vector Fields under Guaranteed Topology Preservation," Computer Graphics Forum, vol. 22, no. 3, pp. 333342, Sept. 2003.
[32] H. Theisel, T. Weinkauf, and H.P. Seidel, "GridIndependent Detection of Closed Stream Lines in 2D Vector Fields," Proc. Conf. Vision, Modeling and Visualization (VMV '04), pp. 421428, Nov. 2004.
[33] Y. Tong, S. Lombeyda, A. Hirani, and M. Desbrun, "Discrete Multiscale Vector Field Decomposition," ACM Trans. Graphics, vol. 22, pp. 445452, July 2003.
[34] X. Tricoche, G. Scheuermann, and H. Hagen, "A Topology Simplification Method for 2D Vector Fields," Proc. IEEE Visualization, pp. 359366, 2000.
[35] X. Tricoche, G. Scheuermann, and H. Hagen, "Continuous Topology Simplification of Planar Vector Fields," Proc. IEEE Visualization, pp. 159166, 2001.
[36] X. Tricoche, G. Scheuermann, and H. Hagen, "TopologyBased Visualization of TimeDependent 2D Vector Fields," Proc. Joint Eurographics  IEEE TCVG Symp. Visualization (VisSym '01), pp. 117126, May 2001.
[37] T. Wischgoll and G. Scheuermann, "Detection and Visualization of Closed Streamlines in Planar Fields," IEEE Trans. Visualization and Computer Graphics, vol. 7, no. 2, pp. 165172, Apr.June 2001.
[38] T. Wischgoll and G. Scheuermann, "Locating Closed Streamlines in 3D Vector Fields," Proc. Joint Eurographics  IEEE TCVG Symp. Visualization (VisSym '02), pp. 227280, May 2002.
[39] T. Wischgoll, G. Scheuermann, and H. Hagen, "Tracking Closed Streamlines in TimeDependent Planar Flows," Proc.Vision Modeling and Visualization Conf. (VMV 01), pp. 447454, Nov. 2001.
[40] E. Zhang, K. Mischaikow, and G. Turk, "Vector Field Design on Surfaces," ACM Trans. Graphics, vol. 25, no. 4, pp. 12941326, 2006.