
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
K. Bodin, C. Lacoursiere, M. Servin, "Constraint Fluids," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 3, pp. 516526, March, 2012.  
BibTex  x  
@article{ 10.1109/TVCG.2011.29, author = {K. Bodin and C. Lacoursiere and M. Servin}, title = {Constraint Fluids}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {18}, number = {3}, issn = {10772626}, year = {2012}, pages = {516526}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.29}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Constraint Fluids IS  3 SN  10772626 SP516 EP526 EPD  516526 A1  K. Bodin, A1  C. Lacoursiere, A1  M. Servin, PY  2012 KW  iterative methods KW  computational fluid dynamics KW  computer graphics KW  digital simulation KW  hydrodynamics KW  interactive simulations KW  constraint fluids KW  fluid simulation method KW  smoothed particle hydrodynamics KW  incompressibility conditions KW  boundary conditions KW  holonomic kinematic constraints KW  systematic multiphysics integration KW  fluid pseudoparticles KW  Archimedes principle KW  buoyancy KW  SPOOK KW  mixed linear complementarity problem KW  fast iterative method KW  computer graphics applications KW  Force KW  Equations KW  Mathematical model KW  Computer graphics KW  Approximation methods KW  Computational modeling KW  Stability analysis KW  variational integrator. KW  SPH KW  incompressible KW  constraints KW  fluid simulation VL  18 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] M. Desbrun and M.P. Cani, “Smoothed Particles: A New Paradigm for Animating Highly Deformable Bodies,” Proc. Eurographics Workshop Computer Animation and Simulation, pp. 6176, 1996.
[2] D. Stora, P.O. Agliati, M.P. Cani, F. Neyret, and J.D. Gascuel, “Animating Lava Flows,” Proc. Conf. Graphics Interface (GI '99), pp. 203210, http://artis.imag.fr/Publications/1999SACNG99 , June 1999.
[3] M. Müller, D. Charypar, and M. Gross, “ParticleBased Fluid Simulation for Interactive Applications,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '03), pp. 154159, 2003.
[4] M. Müller, S. Schirm, and M. Teschner, “Interactive Blood Simulation for Virtual Surgery Based on Smoothed Particle Hydrodynamics,” J. Technology and Health Care, vol. 12, no. 1, pp. 2531, 2004.
[5] W. Liu, C. Sewell, N. Blevins, K. Salisbury, K. Bodin, and N. Hjelte, “Representing Fluid with Smoothed Particle Hydrodynamics in a Cranial Base Simulator,” Proc. Medicine Meets Virtual Reality (MMVR) Conf., pp. 257259, 2008.
[6] M. Müller, B. Solenthaler, R. Keiser, and M. Gross, “ParticleBased FluidFluid Interaction,” Proc. Eurographics/ACM SIGGRAPH Symp. Computer Animation '05, pp. 17, 2005.
[7] T. Lenaerts and P. Dutré, “Mixing Fluids and Granular Materials,” Proc. 30th Ann. Conf. European Assoc. for Computer Graphics (Eurograpics '09), P. Dutré and M. Stamminger, eds., 2009.
[8] M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa, “Point Based Animation of Elastic, Plastic and Melting Objects,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, Aug. 2004.
[9] L.B. Lucy, “A Numerical Approach to the Testing of the Fission Hypothesis,” The Astronomical J., vol. 82, pp. 10131024, 1977.
[10] R.A. Gingold and J.J. Monaghan, “Smoothed Particle Hydrodynamics: Theory and Application to NonSpherical Stars,” Monthly Notices of the Royal Astronomical Soc., vol. 181, pp. 375398, 1977.
[11] S. Li and W.K. Liu, “Meshfree and Particle Methods and Their Applications,” Applied Mechanics Rev., vol. 55, pp. 134, Jan. 2002.
[12] G.R.G.R Liu and M.B. Liu, Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, 2003.
[13] J.J. Monaghan, “Smoothed Particle Hydrodynamics,” Reports on Progress in Physics, vol. 68, no. 8, pp. 17031759, http://stacks.iop.org/00344885/681703, 2005.
[14] S. Rusinkiewicz and M. Levoy, “QSplat: A Multiresolution Point Rendering System for Large Meshes,” Proc. ACM SIGGRAPH, pp. 343352, 2000.
[15] M. Zwicker, M. Pauly, O. Knoll, and M. Gross, “Pointshop 3D: An Interactive System for PointBased Surface Editing,” Proc. ACM SIGGRAPH, pp. 322329, 2002.
[16] M. Levoy, “Display of Surfaces from Volume Data,” IEEE Computer Graphics and Applications, vol. 8, no. 3, pp. 2937, May 1988.
[17] W. McNeely, K. Puterbaugh, and J. Troy, “Six DegreeofFreedom Haptic Rendering Using Voxel Sampling,” Proc. ACM SIGGRAPH, pp. 401408, Aug. 1999.
[18] K.L. Palmerius, M. Cooper, and A. Ynnerman, “Haptic Rendering of Dynamic Volumetric Data,” IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 2, pp. 263276, Mar. 2008.
[19] W.T. Reeves, “Particle System—A Technique for Modeling a Class of Fuzzy Objects,” Proc. ACM SIGGRAPH, vol. 17, pp. 359376, July 1983.
[20] M. Levoy and T. Whitted, “The Use of Points as a Display Primitive,” Technical Report 85022, Computer Science Dept., Jan. 1985.
[21] H. Pfister, M. Zwicker, J. van Baar, and M. Gross, “Surfels: Surface Elements as Rendering Primitives,” Proc. ACM SIGGRAPH, 2000.
[22] M. Gross and H. Pfister, PointBased Graphics. MorganKauffman, July 2007.
[23] R. Courant, K. Friedrichs, and H. Lewy, “On the Partial Difference Equations of Mathematical Physics,” IBM J. Research and Development, vol. 11, pp. 215234, 1967.
[24] R. Bridson, Fluid Simulation for Computer Graphics. A.K. Peters, 2008.
[25] S.J. Cummins and M. Rudman, “An SPH Projection Method,” J. Computational Physics, vol. 152, pp. 584607, 1999.
[26] S. Koshizuka and Y. Oka, “MovingParticle SemiImplicit Method for Fragmentation of Incompressible Fluid,” Nuclear Science Eng., vol. 123, pp. 421434, July 1996.
[27] S. Premoze, T. Tasdizen, J. Bigler, A. Lefohn, and R.T. Whitaker, “ParticleBased Simulation of Fluids,” Proc. Ann. Conf. European Assoc. for Computer Graphics (Eurographics '03), vol. 22, no. 3, pp. 401410, 2003.
[28] E.S. Lee, C. Moulinec, R. Xuc, D. Violeau, D. Laurence, and P. Stansby, “Comparisons of Weakly Compressible and Truly Incompressible Algorithms for the SPH Mesh Free Particle Method,” J. Computational Physics, vol. 227, pp. 84178436, 2008.
[29] M. Ellero, M. Serrano, and P. Español, “Incompressible Smoothed Particle Hydrodynamics,” J. Computational Physics, vol. 226, no. 2, pp. 17311752, http://www.sciencedirect.com/science/article/ B6WHY4P2YWYC5/2611488181b994c812ccd286bcef63457 , 2007.
[30] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration, vol. 31, SpringerVerlag, 2001.
[31] B. Solenthaler and R. Pajarola, “PredictiveCorrective Incompressible SPH,” Proc. ACM SIGGRAPH '09 papers, pp. 16, 2009.
[32] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position Based Dynamics,” J. Visual Comm. and Image Representation, vol. 18, no. 2, pp. 109118, 2007.
[33] G. Batchelor, An Introduction to Fluid Dynamics. Cambridge Univ. Press, 1967.
[34] M. Becker and M. Teschner, “Weakly Compressible SPH for Free Surface Flows,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp. 6372, 2007.
[35] C. Lacoursière, “Ghosts and Machines: Regularized Variational Methods for Interactive Simulations of Multibodies with Dry Frictional Contacts,” PhD Dissertation, Dept. of Computing Science, Umeå Univ., http://urn.kb.seresolve?urn=urn:nbn:se: umu:diva1143 , June 2007.
[36] U. Ascher, H. Chin, L. Petzold, and S. Reich, “Stabilization of Constrained Mechanical Systems with DAEs and Invariant Manifolds,” J. Mechanics of Structures and Machines, vol. 23, pp. 135158, 1995.
[37] F.A. Bornemann, Homogenization in Time of Singularly Perturbed Mechanical Systems. Springer, 1998.
[38] H. Rubin and P. Ungar, “Motion under a Strong Constraining Force,” Comm. on Pure and Applied Math., vol. 10, pp. 6587, 1957.
[39] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Problems, second ed., vol. 14, SpringerVerlag, 1996.
[40] J. Baumgarte, “Stabilization of Constraints and Integrals of Motion in Dynamical Systems,” Computer Methods in Applied Mechanics and Eng., vol. 1, no. 1, pp. 116, 1972.
[41] C. Lanczos, The Variational Principles of Mechanics, fourth ed., Dover Publications, 1986.
[42] V.I. Arnold, Mathematical Methods of Classical Mechanics, second ed., vol. 60, translated from the Russian by K. Vogtmann and A. Weinstein, SpringerVerlag, 1989.
[43] A.J. Kurdila and F.J. Narcowich, “Sufficient Conditions for Penalty Formulation Methods in Analytical Dynamics,” Computational Mechanics, vol. 12, pp. 8196, 1993.
[44] M. Servin and C. Lacoursière, “Rigid Body Cable for Virtual Environments,” IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 4, pp. 783796, July/Aug. 2008.
[45] M. Servin, C. Lacoursière, and N. Melin, “Interactive Simulation of Elastic Deformable Materials,” Proc. SIGRAD Conf., pp. 2232, 2006.
[46] C. Lacoursière, “Regularized, Stabilized, Variational Methods for Multibodies,” Proc. 48th Scandinavian Conf. Simulation and Modeling (SIMS '07), D.F. Peter Bunus and C. Führer, eds., pp. 4048, Oct. 2007.
[47] C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, vol. 16, SIAM, 1995.
[48] M. Yildiz, R.A. Rook, and A. Suleman, “SPH with the Multiple Boundary Tangent Method,” Int'l J. Numerical Methods in Eng., vol. 77, pp. 14161438, http://dx.doi.org/10.1002nme.2458, 2009.
[49] B.V. Mirtich, “ImpulseBased Dynamic Simulation of Rigid Body Systems,” PhD dissertation, Univ. of California at Berkeley, 1996.
[50] AgX, “AgX Multiphysics SDK,” http://www.algoryx.seagx, 2009.
[51] POVRay, “Persistence of Vision Raytracer v.3.6,” http:/www.povray.org, 2008.
[52] Algodoo, “Algodoo 2D Physics Sandbox v5.42,” http://www. algoryx.sealgodoo, 2009.
[53] S. Kitsionas and A.P. Whitworth, “Smoothed Particle Hydrodynamics with Particle Splitting, Applied to Selfgravitating Collapse,” Monthly Notices of the Royal Astronomical Soc., vol. 330, pp. 129136, 2002.
[54] B. Adams, M. Pauly, R. Keiser, and L.J. Guibas, “Adaptively Sampled Particle Fluids,” ACM Trans. Graphics, vol. 26, no. 3, 2007.
[55] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position Based Dynamics,” Proc. Third Workshop Virtual Reality Interactions and Physical Simulation, 2006.
[56] L. Kharevych, W. Yang, Y. Tong, E. Kanso, J.E. Marsden, P. Schröder, and M. Desbrun, “Geometric Variational Integrators for Computer Animation,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '06), pp. 4351, 2006.
[57] H.C. Elman, D.J. Silvester, and A.J. Wathen, Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Oxford Univ. Press, 2005.
[58] S. Koshizuka, Y. Oka, and H. Tamako, “A Particle Method for Calculating Splashing of Incompressible Viscous Fluid,” Proc. Int'l Conf. Math. and Computations, Reactor Physics and Environmental Analysis, vol. 2, pp. 15141521, 1995.
[59] F. Losasso, T. Shinar, A. Selle, and R. Fedkiw, “Multiple Interacting Liquids,” Proc. ACM SIGGRAPH, vol. 25, pp. 812819, 2006.
[60] M. Carlson, P.J. Mucha, R.B. Van HornIII, and G. Turk, “Melting and Flowing,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '02), pp. 167174, 2002.
[61] Y. Zhu and R. Bridson, “Animating Sand as a Fluid,” Proc. ACM SIGGRAPH, 2005.
[62] F. Colin, R. Egli, and F. Lin, “Computing a Null Divergence Velocity Field Using Smoothed Particle Hydrodynamics,” J. Computational Physics, vol. 217, pp. 680692, 2006.
[63] W.G. Hoover, Smooth Particle Applied Mechanics: The State of the Art. World Scientific, 2006.
[64] M. Kass and G. Miller, “Rapid, Stable Fluid Dynamics for Computer Graphics,” Proc. ACM SIGGRAPH, vol. 24, pp. 4957, 1990.
[65] J. Stam, “Stable Fluids,” Proc. ACM SIGGRAPH, pp. 121128, 1999.
[66] J. Chen and N. Lobo, “Toward InteractiveRate Simulation of Fluids with Moving Obstacle Using the NavierStokes Equations,” Computer Graphics and Image Processing, vol. 57, pp. 107116, 1994.
[67] N. Foster and D. Metaxas, “Realistic Animation of Liquids,” Graphical Models and Image Processing, vol. 58, no. 5, pp. 471483, 1996.
[68] N. Foster and R. Fedkiw, “Practical Animation of Liquids,” Proc. ACM SIGGRAPH, pp. 2330, 2001.
[69] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell, “Animation and Rendering of Complex Water Surfaces,” ACM Trans. Graphics, vol. 21, no. 3, pp. 736744, 2002.
[70] M.R. Hestenes and E. Stiefel, “Methods of Conjugate Gradients for Solving Linear Systems,” J. Research of the Nat'l Bureau of Standards, vol. 49, pp. 409436, 1952.
[71] F. Losasso, J.O. Talton, N. Kwatra, and R. Fedkiw, “English TwoWay Coupled SPH and Particle Level Set Fluid Simulation,” IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 4, pp. 797804, July/Aug. 2008.
[72] G.R.G.R Liu and M.B. Liu, Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, 2003.
[73] K. Lundin, M. Sillen, M. Cooper, and A. Ynnerman, “Haptic Visualization of Computational Fluid Dynamics Data Using Reactive Forces,” Proc. Conf. Visualization and Data Analysis, R.F. Erbacher, J.C. Roberts, M.T. Grohn, and K. Borner, eds., pp. 3141, 2005.
[74] M. Anitescu, “OptimizationBased Simulation of Nonsmooth Rigid Multibody Dynamics,” Math. Programming, vol. 105, no. 1, pp. 113143, 2006.
[75] R. Goldenthal, D. Harmon, R. Fattal, M. Bercovier, and E. Grinspun, “Efficient Simulation of Inextensible Cloth,” Proc. ACM SIGGRAPH, 2007.