Subscribe

Issue No.03 - March (2012 vol.18)

pp: 434-446

Ankur Patel , University of York, York

William A.P. Smith , University of York, York

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.101

ABSTRACT

In this paper, we present a framework for the groupwise processing of a set of meshes in dense correspondence. Such sets arise when modeling 3D shape variation or tracking surface motion over time. We extend a number of mesh processing tools to operate in a groupwise manner. Specifically, we present a geodesic-based surface flattening and spectral clustering algorithm which estimates a single class-optimal flattening. We also show how to modify an iterative edge collapse algorithm to perform groupwise simplification while retaining the correspondence of the data. Finally, we show how to compute class-optimal texture coordinates for the simplified meshes. We present alternative algorithms for topologically symmetric data which yield a symmetric flattening and low-resolution mesh topology. We present flattening, simplification, and texture mapping results on three different data sets and show that our approach allows the construction of low-resolution 3D morphable models.

INDEX TERMS

Groupwise processing, dense correspondence, surface flattening, simplification, texture mapping.

CITATION

Ankur Patel, William A.P. Smith, "Automated Construction of Low-Resolution, Texture-Mapped, Class-Optimal Meshes",

*IEEE Transactions on Visualization & Computer Graphics*, vol.18, no. 3, pp. 434-446, March 2012, doi:10.1109/TVCG.2011.101REFERENCES

- [1] W.-C. Ma, T. Hawkins, P. Peers, C.-F. Chabert, M. Weiss, and P. Debevec, “Rapid Acquisition of Specular and Diffuse Normal Maps from Polarized Spherical Gradient Illumination,”
Proc. Eurographics Symp. Rendering, pp. 183-194, 2007.- [2] A. Sheffer, E. Praun, and K. Rose, “Mesh Parameterization Methods and Their Applications,”
Foundations and Trends in Computer Graphics and Vision, vol. 2, no. 2, pp. 105-171, 2006.- [3] M. Garland and P.S. Heckbert, “Surface Simplification Using Quadric Error Metrics,”
Proc. SIGGRAPH, pp. 209-216, 1997.- [4] Y. Furukawa and J. Ponce, “Dense 3D Motion Capture from Synchronized Video Streams,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 1-8, 2008.- [5] L. Zhang, N. Snavely, B. Curless, and S.M. Seitz, “Spacetime Faces: High Resolution Capture for Modeling and Animation,”
ACM Trans. Graphics, vol. 23, no. 3, pp. 548-558, 2004.- [6] V. Blanz and T. Vetter, “A Morphable Model for the Synthesis of 3D Faces,”
Proc. SIGGRAPH, pp. 187-194, 1999.- [7] N. Hasler, C. Stoll, M. Sunkel, B. Rosenhahn, and H.-P. Seidel, “A Statistical Model of Human Pose and Body Shape,”
Computer Graphics Forum, vol. 2, no. 28, pp. 337-346, 2009.- [8] M.J. Leotta and J.L. Mundy, “Predicting High Resolution Image Edges with a Generic, Adaptive, 3-D Vehicle Model,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 1311-1318, 2009.- [9] V. Kraevoy and A. Sheffer, “Cross-Parameterization and Compatible Remeshing of 3D Models,”
ACM Trans. Graphics, vol. 23, no. 3, pp. 861-869, 2004.- [10] E. Praun, W. Sweldens, and P. Schröder, “Consistent Mesh Parameterizations,”
Proc. SIGGRAPH, pp. 179-184, 2001.- [11] B. Amberg, S. Romdhani, and T. Vetter, “Optimal Step Nonrigid ICP Algorithms for Surface Registration,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 1-8, 2007.- [12] M.S. Floater, “Mean Value Coordinates,”
Computer Aided Geometric Design, vol. 20, no. 1, pp. 19-27, 2003.- [13] B. Lévy, S. Petitjean, N. Ray, and J. Maillot, “Least Squares Conformal Maps for Automatic Texture Atlas Generation,”
ACM Trans. Graphics, vol. 21, no. 3, pp. 362-371, 2002.- [14] G. Zigelman, R. Kimmel, and N. Kiryati, “Texture Mapping Using Surface Flattening via Multidimensional Scaling,”
IEEE Trans. Visualization and Computer Graphics, vol. 8, no. 2, pp. 198-207, Apr.-June 2002.- [15] K. Zhou, J. Snyder, B. Guo, and H.-Y. Shum, “Iso-Charts: Stretch-Driven Mesh Parameterization Using Spectral Analysis,”
Proc. Symp. Geometry Processing, pp. 47-56, 2004.- [16] A. Sheffer, B. Lévy, M. Mogilnitsky, and A. Bogomyakov, “ABF++: Fast and Robust Angle Based Flattening,”
ACM Trans. Graphics, vol. 24, no. 2, pp. 311-330, 2005.- [17] L. Liu, L. Zhang, Y. Xu, C. Gotsman, and S.J. Gortler, “A Local/Global Approach to Mesh Parameterization,”
Computer Graphics Forum, vol. 27, no. 5, pp. 1495-1504, 2008.- [18] M. Ben-Chen, C. Gotsman, and G. Bunin, “Conformal Flattening by Curvature Prescription and Metric Scaling,”
Computer Graphics Forum, vol. 27, no. 2, pp. 449-458, 2008.- [19] Y. Yang, J. Kim, F. Luo, S. Hu, and X. Gu, “Optimal Surface Parameterization Using Inverse Curvature Map,”
IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 5, pp. 1054-1066, Sept./Oct. 2008.- [20] A. Mohr and M. Gleicher, “Deformation Sensitive Decimation,” technical report, Univ. of Wisconsin, 2003.
- [21] C. DeCoro and S. Rusinkiewicz, “Pose-Independent Simplification of Articulated Meshes,”
Proc. Symp. Interactive 3D Graphics and Games, 2005.- [22] E. Landreneau and S. Schaefer, “Simplification of Articulated Meshes,”
Computer Graphics Forum, vol. 28, no. 2, pp. 347-353, 2009.- [23] Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, and M. Ouimet, “Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering,”
Proc. Advances in Neural Information Processing Systems (NIPS), pp. 177-184, 2004.- [24] P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter, “A 3D Face Model for Pose and Illumination Invariant Face Recognition,”
Proc. IEEE Int'l Conf. Advanced Video and Signal Based Surveillance, pp. 296-301, 2009.- [25] B. Fink, J.T. Manning, N. Neave, and K. Grammer, “Second to Fourth Digit Ratio and Facial Asymmetry,”
Evolution and Human Behavior, vol. 25, no. 2, pp. 125-132, 2004.- [26] A. Golovinskiy, J. Podolak, and T. Funkhouser, “Symmetry-Aware Mesh Processing,”
Proc. IMA Conf. Math. of Surfaces, pp. 170-188, 2009.- [27] T.F. Cox and M.A. Cox,
Multidimensional Scaling. CRC Press, 1994.- [28] R. Kimmel and J.A. Sethian, “Computing Geodesic Paths on Manifolds,”
Proc. Nat'l Academy of Sciences of the USA, vol. 95, no. 15, pp. 8431-8435, 1998.- [29] G. Peyré and L.D. Cohen, “Geodesic Computations for Fast and Accurate Surface Remeshing and Parameterization,”
Progress in Nonlinear Differential Equations and Their Applications, vol. 63, pp. 157-171, 2005.- [30] V.E. McGee, “Multidimensional Scaling of n Sets of Similarity Measures: A Nonmetric Individual Differences Approach,”
Multivariate Behavioral Research, vol. 3, no. 2, pp. 233-248, 1968.- [31] G. Peyré and L.D. Cohen, “Geodesic Remeshing Using Front Propagation,”
Int'l J. Computer Vision, vol. 69, no. 1, pp. 145-156, 2006.- [32] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno, “A General Method for Preserving Attribute Values on Simplified Meshes,”
Proc. IEEE Visualization, pp. 59-66, 1998.- [33] P. Sander, J. Snyder, and H. Hoppe, “Texture Mapping Progressive Meshes,”
Proc. SIGGRAPH, pp. 409-416, 2001.- [34] Graphite 2.0 alpha 4, http://alice.loria.fr/index.php/software/ 3-platform22-graphite.html, June 2010.
- [35] N. Ray and B. Lévy, “Hierarchical Least Squares Conformal Maps,”
Proc. Pacific Conf. Computer Graphics and Applications, pp. 263-270, 2003.- [36] P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: Measuring Error on Simplified Surfaces,”
Computer Graphics Forum, vol. 17, no. 2, pp. 167-174, 1998. |